Origin of probabilities and their application to the multiverse

Andreas Albrecht
Center for Quantum Mathematics and Physics (QMAP)

UC Davis

Nov 1, 2019
AA \& D. Phillips (PRD Dec 2014) (more info here:
http://albrecht.ucdavis.edu/special-topics/origin-probabil)

Ways to experience this talk:

Ways to experience this talk:

> Have you thought about the "multiverse", "eternal inflation" cosmological "measure problems" etc?

You are
prepared to
fully appreciate the context

Ways to experience this talk:

Ways to experience this talk:

Have you thought about the
"multiverse", "eternal inflation" cosmological "measure problems" etc?

No worries, I will introduce many of these concepts at an introductory level

Still confused?

Ignore cosmology motivations and consider my (provocative) claims purely in the context of everyday/laboratory physics

Ways to experience this talk:

Have you thought about the
"multiverse", "eternal inflation" cosmological "measure problems" etc?

Yes

No

You are

prepared to fully appreciate the context

No worries, I will introduce
many of these concepts at an introductory level

Still confused?

Ignore cosmology motivations and consider my (provocative) claims purely in the context of everyday/laboratory physics

Ways to experience this talk:

Have you thought about the
"multiverse", "eternal inflation" cosmological "measure problems" etc?

Yes

No

You are

prepared to fully appreciate the context

No worries, I will introduce
many of these concepts at an introductory level

Based on undergrad physics only

Ignore cosmology motivations and consider my (provocative) claims purely in the context of everyday/laboratory physics

My history with this topic

My history with this topic

My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical

 ones)
My history with this topic

My history with this topic

My history with this topic

$$
\begin{gathered}
\text { Page: Quantum } \\
\text { probabilities } \\
\text { cannot address } \\
\text { key multiverse } \\
\text { questions. } \\
\text { (OK, just use } \\
\text { classical ones) }
\end{gathered}
$$

My history with this topic

My history with this topic

My history with this topic

AA: This is fundamentally about giving permission to dismiss certain probability questions (the non quantum ones) as "ill posed".

My history with this topic

My history with this topic

My history with this topic

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Multipole moment, ℓ

Slow rolling of inflaton

Slow rolling of inflaton

Slow rolling of inflaton

Steinhardt 1982, Linde 1982, Vilenkin 1983, and (then) many others

Slow rolling of inflaton

Slow rolling of inflaton

Steinhardt 1982, Linde 1982, Vilenkin 1983, and (then) many others

The multiverse of eternal

inflation with multiple
classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

"Where are we?" \rightarrow
Expect the theory to give you a probability distribution in this
space... hopefully with
some sharp
predictions

The multiverse of eternal

inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

"Anything that can happen will happen infinitely many times" (A. Guth)
"Where are we?" \rightarrow
Expect the theory to give you a probability distribution in this
space... hopefully with
some sharp
predictions

The multiverse of eternal inflation with multiple classical rolling direct String theory landscape even more complicated (e.g. many types of eternal inflation)

Classicall Rolling Rolling

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)
"Anything that can happen will happen infinitely many times" (A. Guth)
"Where are we?" \quad >
Expect the theory to give you a probability distribution in this space... hopefully with some sharp predictions

The multiverse of eternal inflation with multiple classical rolling direct String theory landscape even more complicated (e.g. many types of eternal inflation)

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)
"Anything that can happen will happen infinitely many times" (A. Guth)
"Where are we?" \rightarrow
Expect the theory to give you a probability distribution in this space... hopefully with some sharp predictions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)
"Anything that can happen will happen infinitely many times" (A. Guth)
"Where are we?" $>$
Expect the theory to give you a probability distribution in this
space... hopefully with some sharp
predictions

Slow rolling of inflaton

Steinhardt 1982, Linde 1982, Vilenkin 1983, and (then) many others

Quantum vs Non-Quantum probabilities

Non-Quantum probabilities in a toy model:

$$
\begin{array}{lc}
U=A \otimes B \quad & \left.A:\{1\rangle^{A},|2\rangle^{A}\right\} \\
U:\{|11\rangle,|12\rangle,|21\rangle,|22\rangle\} & \left.\left.|i j\rangle \equiv|1\rangle^{A}| | j\right\rangle^{B},|2\rangle^{B}\right\}
\end{array}
$$

Page, 2009; These slides follow AA \& Phillips 2014

Quantum vs Non-Quantum probabilities

Non-Quantum probabilities in a toy model:

$$
\begin{array}{lc}
U=A \otimes B \quad & \left.A:\{1\rangle^{A},|2\rangle^{A}\right\} \\
U:\{|11\rangle,|12\rangle,|21\rangle,|22\rangle\} & \left.|i j\rangle \equiv|1\rangle^{A}|j\rangle^{B},|2\rangle^{B}\right\}
\end{array}
$$

Possible Measurements \leftrightarrows Projection operators:
Measure A only:

$$
\hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|]
$$

Measure B only:

$$
\hat{P}_{i}^{B}=\left(|i\rangle^{B B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

Quantun BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

$$
U=A
$$

Possible Measurements \longleftrightarrow Projection operators:
Measure A only:

$$
\begin{aligned}
& \hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|] \\
& \hat{P}_{i}^{B}=\left(|i\rangle^{B B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
\end{aligned}
$$

Measure B only:
Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

Quantun BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

Could Write

$$
U=A
$$

$$
\hat{P}_{i}=p_{A} \hat{P}_{i}^{A}+p_{B} \hat{P}_{i}^{B}
$$

Possible Measurements \leftrightarrows Projection operators:
Measure A only:

$$
\begin{aligned}
& \hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|] \\
& \hat{P}_{i}^{B}=\left(|i\rangle^{B}{ }^{B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
\end{aligned}
$$

Measure B only:
Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

Possible Measurements \leftrightarrows Projection operators:
Measure A only:

$$
\hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|]
$$

Measure B only:

$$
\hat{P}_{i}^{B}=\left(|i\rangle^{B B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

Quantun

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

Could Write

$$
\hat{P}_{i}=p_{A} \widehat{P_{i}^{A}}+\widehat{p_{B}} \widehat{P}_{i}^{B}
$$

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

${ }^{4}|j\rangle^{B}$

Does not

represent a quantum measurement
nents \Leftarrow Projection operators:

$$
\begin{aligned}
& \hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|] \\
& \hat{P}_{i}^{B}=\left(|i\rangle^{B}{ }^{B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
\end{aligned}
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

Quantun

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

Could Write

$$
U=A
$$

Does not

represent a

$$
\text { nents } \leftrightarrow p \text { Page: The }
$$ quantum measurement

Measure entire U :

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

$$
\hat{P}_{i}=p_{A}^{\widehat{P_{i}^{A}}+\widehat{p_{B} P_{i}^{B}}}
$$

multiverse requires
this (are you in pocket universe A or B?)

Quantun

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

Could Write

$$
U=A
$$

$$
\hat{P}_{i}=p_{A} \widehat{P_{i}^{A}}+\widehat{p_{B}}{\widehat{P_{i}}}_{i}^{B}
$$

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

Does not

represent a quantum measurement

Measure entire U :

$$
\text { nents } \leftrightarrow p \text { Page: The }
$$ multiverse requires this (are you in pocket universe A or B?)

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

- All everyday probabilities are quantum probabilities

AA \& D. Phillips 2014

- All everyday probabilities aro numantum probabilities

Our *only* experiences with successful practical applications of probabilities are with quantum probabilities

AA \& D. Phillips 2014

- All everyday probabilities are quantum probabilities
- One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin
- All everyday probabilities are quantum probabilities
- One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin

A problem for
many multiverse theories (as practiced)

AA \& D. Phillips 2014

Quantun

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

-lassir al

 Probr silitiesCould Write

$$
U=A
$$

$$
\hat{P}_{i}=p_{A} \widehat{P_{i}^{A}}+\widehat{p_{B}} \hat{P}_{i}^{B}
$$

A, B

Does not
represent a quantum measurement

Measure entire U :

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

$$
\text { nents } \leftrightarrow P \quad \text { Page: The }
$$ multiverse requires this (are you in pocket universe A or B?)

Quantum

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is Non-Quan A or B that is being measured.

-lassiral

 Prob silitiesCould Write

$$
U=A \quad \quad \hat{P}_{i}=p_{A}^{2} \widehat{P_{i}^{A}}+\widehat{p_{B} \hat{P}_{i}^{B}}
$$ to meas re

A, B Where do these

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

Does not
represent a quantum measurement

Measure entire U :

$$
\text { nets } \leftrightarrow P \text { Page: The }
$$ multiverse requires this (are you in pocket universe A or B?)

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Quantum effects in a billiard gas

$$
\left(\begin{array}{cccccccccc}
0^{\circ} & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 8_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right.
$$

Quantum effects in a billiard gas

Quantum effects in a billiard gas

Quantum effects in a billiard gas

Quantum effects in a billiard gas

$$
\psi \propto \exp \left(\frac{-x^{2}}{2 a^{2}}\right)
$$

$\psi \propto \exp \left(\frac{-x^{2}}{2 a^{2}}\right)$

$$
\begin{aligned}
& \Delta b=\delta x_{\perp}+\frac{\delta p_{\perp}}{m} \Delta t=\sqrt{2}\left(a+\frac{\hbar}{2 a} \frac{l}{m \bar{v}}\right) \\
& \min 2^{3 / 2}\left(\frac{\hbar l}{2 m \bar{v}}\right) \equiv \sqrt{l \lambda_{d B} / 2}
\end{aligned}
$$

Quantum effects in a billiard gas

Quantum effects in a billiard gas

Subsequent collisions amplify the initial uncertainty (treat later collisions classically \rightarrow additional conservatism)

Quantum effects in a billiard gas

After n collisions:

$$
\Delta b_{n}=\Delta b(1+2 l / r)^{n}
$$

Quantum effects in a billiard gas

n_{Q} is the number of collisions so that $\Delta b_{n_{Q}}=r$
(full quantum uncertainty as to which is the next collision)

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water							
Billiards							
Bumper Car							

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water							
Billiards							
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water							
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1×10^{-17}	8
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1×10^{-17}	8
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air	1.6×10^{-10}	3.4×10^{-7}	4.7×10^{-26}	360	6.2×10^{-12}	2.9×10^{-9}	-0.3
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1×10^{-17}	8
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air	1.6×10^{-10}	3.4×10^{-7}	4.7×10^{-26}	360	6.2×10^{-12}	2.9×10^{-9}	-0.3
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1	Quantum
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.	at every collision

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{O}
Air	1.6×10^{-10}	3.4×10^{-7}	4.7×10^{-26}	360	6.2×10^{-12}	2.9×10^{-9}	-0.3
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.8	Quantum at every collision
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.	3.

$\left(n_{Q}<1 \rightarrow\right.$
breakdown of formula, but conclusion robust)

n_{Q} for a number of physical systems

(all units MKS)

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{0}
Air	1.6×10^{-10}	3.4×10^{-7}	4.7×10^{-26}	360	6.2×10^{-12}	2.9×10^{-9}	-0.3
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards					6.6×10^{-34}	5.)	ntu
Bumper Car							every

n_{Q} for a number of physical systems

(all units MKS)

An important role for Brownian motion: Uncertainty in neuron transmission times

Image from http://www.nature.com/nrn/journal/v13/n4/full/nrn3209.html

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

$$
\delta N=f \delta t_{t}=0.5
$$

Using:

Coin diameter $=d$

$$
\begin{aligned}
& \delta t_{n} \approx 1 \mathrm{~ms} \quad v_{h}=v_{f}=5 \mathrm{~m} / \mathrm{s} \\
& d=0.01 \mathrm{~m}
\end{aligned}
$$

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

$\delta N=f \delta t_{t}=0.5$

50-50 coin flip probabilities are

 a derivable quantum result$$
\begin{aligned}
& \delta t_{n} \approx 1 m s \quad v_{h}=v_{f}=5 \\
& d=0.01 \mathrm{~m}
\end{aligned}
$$

Using:

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

$\delta N=f \delta t_{t}=0.5$

50-50 coin flip probabilities are

Usin Without reference to "principle of indifference" etc.
a derivable quantum result

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

50-50 coin flip probabilities are a derivable

Usir Without reference to "principle of indifference" etc. etc.

Analysis of coin flip

$$
\begin{aligned}
& \delta t_{f}=\delta t \\
&= \sqrt{2} \delta t_{f} \\
& f=\frac{4 v_{f}}{\pi d}
\end{aligned}
$$

NB: Coin flip is "at the margin" of deterministic vs random: Increasing d or deceasing v_{h} can reduce $\delta \mathrm{N}$ substantially
$\delta N=f \delta t_{t}=0.5$

Coin diameter $=d$
Using:

$$
v_{h}
$$

$$
\begin{aligned}
& \delta t_{n} \approx 1 \mathrm{~ms} \quad v_{h}=v_{f}=5 \mathrm{~m} / \mathrm{s} \\
& d=0.01 \mathrm{~m}
\end{aligned}
$$

Analysis of coin flip

$$
\begin{aligned}
& \delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{b}+v_{f}}\right) \\
= & \sqrt{2} \delta t_{f} \quad \text { NB: Coin flip is "at the margin" of }
\end{aligned}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$ deterministic vs random: Increasing d or deceasing v_{h} can reduce δN substantially

$$
\delta N=f \delta t_{t}=0.5
$$

$$
v_{h}
$$

Coin diameter $=d$
Still, this is a good illustration of how quantum uncertainties can filter up into the macroscopic world, for systems that *are* random.

Analysis of coin flip

$$
\begin{aligned}
& \delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{b}+v_{f}}\right) \\
= & \sqrt{2} \delta t_{f} \quad \text { NB: Coin flip is "at the margin" of }
\end{aligned}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$ deterministic vs random: Increasing d or deceasing v_{h} can reduce δN substantially

$$
\delta N=f \delta t_{t}=0.5
$$

$$
v_{h}
$$

Coin diameter $=d$
Still, this is a good illustration of how quantum uncertainties can filter up into the macroscopic world, for systems that *are* random.

Physical randomness vs "probabilities of belief"

Physical randomness: To do with physical properties of detector etc

Bayes:

$$
P(\text { Theory } \mid \text { Data })=\frac{P(\text { Data } \mid \text { Theory })}{P(\text { Data })} P(\text { Theory })
$$

Physical randomness vs "probabilities of belief"

Bayes:

$$
\begin{aligned}
P(\text { Theory } \mid \text { Data }) & =\frac{P(\text { Data } \mid \text { Theory })}{P(\text { Data })} P(\text { Theory }) \\
& \begin{array}{l}
\text { Probabilities of belief: } \\
\text { - Which data yo trust most } \\
\text { - Which theory you like best }
\end{array}
\end{aligned}
$$

Physical randomness vs "probabilities of belief"

This talk is about physical randomness only
Bayes:

$$
P(\text { Theory } \mid \text { Data })=\frac{P(\text { Data } \mid \text { Theory })}{P(\text { Data })} P(\text { Theory })
$$

Physical randomness vs "probabilities of belief"

Bayes:

$$
P(\text { Theory } \mid \text { Data })=\frac{P(\text { Data } \mid \text { Theory })}{P(\text { Data })} P(\text { Theory })
$$

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential

Physical randomness vs "probabilities of belief"

Bayes:

$$
P(\text { Theory } \mid \text { Data })=\frac{P(\text { Data } \mid \text { Theory })}{P(\text { Data })} P(\text { Theory })
$$

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

$$
\underbrace{P_{4}\left(T \mid D_{4}\right)=\frac{P\left(D_{4} \mid T\right)}{P\left(D_{4}\right)} P_{3}(T)}_{P_{5}\left(T \mid D_{5}\right)=\frac{P\left(D_{5} \mid T\right)}{P\left(D_{5}\right)} P_{4}(T)}
$$

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

$$
\underbrace{\underbrace{P\left(D_{1}\right)}_{P_{4}\left(T \mid D_{4}\right)=\frac{P\left(D_{4} \mid T\right)}{P\left(D_{4}\right)} P_{3}(T)} P_{0}(T)}_{\underbrace{P_{1}\left(T \mid D_{1}\right)=}_{P_{5}\left(T \mid D_{5}\right)=\frac{P\left(D_{5} \mid T\right)}{P\left(D_{5}\right)} P_{4}(T)}}
$$

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

$$
P_{1}\left(T \mid D_{1}\right)=\frac{P\left(D_{1} \mid T\right)}{P\left(D_{1}\right)} \underbrace{\begin{array}{l}
\text { This initial "model } \\
\text { uncertainty" prior is the } \\
\text { only } P(T) \text { that is a pure } \\
\text { probability of belief. }
\end{array}}_{P_{0}(T)}
$$

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

$$
P_{1}\left(T \mid D_{1}\right)=\frac{P\left(D_{1} \mid T\right)}{P\left(D_{1}\right)} P_{0}(T) \quad \begin{aligned}
& \text { This initial "model } \\
& \text { uncertainty" prior is the } \\
& \text { only } P(T) \text { that is a pure } \\
& \text { probability of belief. }
\end{aligned}
$$

$$
P_{4}\left(T \mid D_{4}\right)=\frac{P\left(D_{4} \mid T\right)}{P\left(D_{4}\right)} P_{3}(T)
$$

This talk is only about $P(D \mid T)$ wherever it $\frac{5}{\left.D_{5}\right)}$
appears

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

Physical randomness vs "probabilities of belief"

Adding new data (theory priors can include earlier data sets):

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument.

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks \& Fischler)

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks \& Fischler)
- Which theories really do "require" classical probabilities not yet resolved rigorously.

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks \& Fischler)
- Which theories really do "require" classical probabilities not yet resolved rigorously (symmetry?... simplicity? See below)

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks \& Fischler)
- Which theories really do "require" classical probabilities not yet resolved rigorously (symmetry?... simplicity? See below)

Some further thoughts:

Some further thoughts:

- Special relationship to cosmic structure from inflation: "(cosmic) probability censorship"
- A counterexample: Betting on the digits of Pi (Not!)
- Compare with classical computer
- Compare with color:

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Central message:

- "Randomness is (quantum) physics"
- Counting may or MAY NOT have a role in inferring or representing physical randomness

Central message:

- "Randomness is (quantum) physics"
- Counting may or MAY NOT have a role in inferring or representing physical randomness
- Example: Flip a coin and choose a ball:

Central message:

- "Randomness is (quantum) physics"
- Counting may or MAY NOT have a role in inferring or representing physical randomness
- Example: Flip a coin and choose a ball:

Central message:

- "Randomness is (quantum) physics"
- Counting may or MAY NOT have a role in inferring or representing physical randomness
- Example: Flip a coin and choose a ball:

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Resultd

- - क्याilts

In a multiverse with many copies of you, there simply is *no* physical completion for the question "which observer am I?". Future data may address this, but not in time to make predictions.

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question "which observer am I?". Future data may address this, but not in time to make predictions.

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Resultd

-nctilts

In a multiverse with many copies of you, there apparently is *no* physical completion for the question "which observer am I?". Future data may address this, but not in time to make predictions.

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Resultd

- - क्tilts

In a multiverse with many copies of you, there apparently is *no* nhvsical completion for the
This is where things hich observer am I?". go wrong in the standard treatment
y address this, but make predictions. of the multiverse

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Resultd

- - milts

In a multiverse with many copies of you, there apparently is *no* ahvsical completion for the
This is where things hich oben- In many cases go wrong in the \quad counting observers standard treatment of the multiverse has no predictive value

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Resultd

- - milts

In a multiverse with many copies of you, there apparently is * No point in anvsical completion fort counting
This is where things hich ober- In ma for these go wrong in the standard treatment of the multiverse value

Now ask: What is the probability that a ball drawn from the "Results" bowl is red?

- Different physical "completions" of this question are possible which give different answers. (\approx measures)
- Counting is NOT enough.

Resultd

- - milts

In a multiverse with many copies of you, the e apparently l: * No point in anvsical compietivil ior t
This is where things hich ober- In ma for these go wrong in the standard treatment of the multiverse $\xrightarrow{\rightarrow}$ counting d cases has no predictive value

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

Implications for eternal inflation

\$ No "volume factors"
2) Boltzmann Brain problem reduced
3) No "youngness/end of time" problem

Pocket A with P_{A}

Pocket B with $\quad p_{B}$

Implications for eternal inflation

\$ No "volume factors"
2) Boltzmann Brain problem reduced
3) No "youngness/end of time" problem

Pocket A with p_{A}
(from quantum branching ratio)

One semiclassical universe having many more possible observers in it than another (often counted by volume), does *not* give that universe greater statistical weight. Quantum branching ratio into one vs the other $\left(p_{A} / p_{B}\right)$ does count

Pocket A with P_{A}

Implications for eternal inflation

\$ No "volume factors"
2) Boltzmann Brain problem reduced
3) No "youngness/end of time" problem

Pocket A with P_{A}

Pocket B with $\quad p_{B}$

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No "youngness/end of time" problem

Pocket A with p_{A}
Pocket B with $\quad p_{B}$

Implications for eternal inflation

1) No "volume factors"

This model has no "Boltzmann
Brain" problem as long as p_{A} / p_{B} is "not too small"

Pocket A with p_{A}
Pocket B with $\quad p_{B}$

Implications for eternal inflation

1) No "volume factors"

This model has no "Boltzmann
Brain" problem as long as p_{A} / p_{B} Is not too small

Pocket A with $p_{A} \quad$ Pocket B with p_{B}

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No "youngness/end of time" problem

Pocket A with p_{A}
Pocket B with $\quad p_{B}$

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No "\&ungness/end of time" problem

More pocket
universes produced later vs earlier (due to more inflation)

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No "Koungness/end of time" problem

More pocket
universes produced
later vs earlier (due to more inflation) \& experience any time cutoff

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No "oungness/end of time" problem

More pocket
universes produced
later vs earlier (due
to more inflation) \&
experience any
time cutoff

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No "Koungness/end of time" problem

More pocket
universes produced
later vs earlier (due to more inflation) \& experience any time cutoff

Implications for eternal inflation

1) No "volume factors"
2) Boltzmann Brain problem reduced
3) No Koungness/end of time" problem

More pocket universes produced later vs earlier (due to more inflation) \& experience any time cutoff

Conclusions

1) All practically applicable probabilities are of physics (quantum) origin.
2) Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities
3) Standard discussions of probabilities in cosmology often make errors re 2)
4) The "principle of indifference" has only ever been a phenomenology of point 1), nothing deeper. (Thus it should not form the basis of a "derivation of the Born rule".)
5) 6) and care about 2) allow us to introduce better discipline into cosmological discussions (just say "no"). Implications so far:
a) No (counting based) volume factors
b) Reduced Boltzmann Brain problem
c) No youngness/end of time problem
d) Measure problems apparently resolved?
1) More rigorous treatment of eternal inflation (etc) needed to determine full implicationfs.ect © © $111 / 2 / 2019$

Conclusions

1) All practically applicable pro origin.
2) Counting of objects may legitimate quantum pro
3) Standard discussions of errors re 2)

In a systematic treatment of the multiverse the classical probabilities will reappear as
"priors". Same math but very different role.
4) The "principle of indifference phenomenology of point 1), nothing unan an form the basis of a "derivation of the Born rule".
5) 1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say "no"). Implications so far:
a) No (counting based) volume factors
b) Reduced Boltzmann Brain problem
c) No youngness/end of time problem
d) Measure problems apparently resolved?
6) More rigorous treatment of eternal inflation (etc) needed to determine full implication̂ts. ${ }^{\text {secht @ NBI 11/1/2019 }}$

Conclusions

1) All practically applicable pro origin.
2) Counting of objects may legitimate quantum pro
3) Standard discussions of errors re 2)

In a systematic treatment of the multiverse the classical probabilities will reappear as "priors". Same math but very different role.
4) The "principle of indifference phenomenology of point 1), nothingy form the basis of a "derivation of th

Also related to "Boltzmann Brains"
a) No (counting based) volume to
b) Reduced Boltzmann Brain problè
c) No youngness/end of time problem
d) Measure problems apparently resolved?
6) More rigorous treatment of eternal inflation (etc) needed to determine full implication̂'s. ${ }^{\text {fech @ NB1 11/1/2019 }}$

Conclusions

1) All practically applicable probabilities are of physics (quantum) origin.
2) Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities
3) Standard discussions of probabilities in cosmology often make errors re 2)
4) The "principle of indifference" has only ever been a phenomenology of point 1), nothing deeper. (Thus it should not form the basis of a "derivation of the Born rule".)
5) 6) and care about 2) allow us to introduce better discipline into cosmological discussions (just say "no"). Implications so far:
a) No (counting based) volume factors
b) Reduced Boltzmann Brain problem
c) No youngness/end of time problem
d) Measure problems apparently resolved?
1) More rigorous treatment of eternal inflation (etc) needed to determine full implicationfs.ect © © $111 / 2 / 2019$

Multipole moment, ℓ

Additional Slides

Cosmic structure

A note on "probability censorship"

Cosmic structure

A note on "probability censorship"

Cosmic structure originates in quantum ground state in inflationary cosmology

Cosmic structure originates "superhorizon" in Standard Big Bag (why would they be quantum?)

Scale factor (measures expansion, time)

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks \&

Further discussion

Bet on the millionth digit of π
 3.1415926535

208998628034825342117067982148086513282306647093844609550582231725359408128481 117450284102701938521105559644622948954930381964428810975665933446128475648233 786783165271201909145648566923460348610454326648213393607260249141273724587006 606315588174881520920962829254091715364367892590360011330530548820466521384146 951941511609433057270365759591953092186117381932611793105118548074462379962749 567351885752724891227938183011949129833673362440656643086021394946395224737190 702179860943702770539217176293176752384674818467669405132000568127145263560827 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496

Further discussion

Bet on the millionth digit of π
 3.1415926535 20899862803 - The *only* thing random is the choice of digit to bet on 11745028410
 \qquad

786783165271201909145648566923460348610454326648213393607260249141273724587006 606315588174881520920962829254091715364367892590360011330530548820466521384146 951941511609433057270365759591953092186117381932611793105118548074462379962749 567351885752724891227938183011949129833673362440656643086021394946395224737190 702179860943702770539217176293176752384674818467669405132000568127145263560827 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496

Further discussion

Bet on the millionth digit of π
 3.1415926535 20899862803 11745028410 78678316527 60631558817 95194151160 56735188575 - The *only* thing random is the choice of digit to bet on

 $702179860943 / 02 / / 053921 / 1 / 62931 / 6 / 523846 / 481846 / 66940513200056812 / 14526356082 /$ 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496
Further discussion

Bet on the millionth digit of π
 3.1415926535 20899862803 11745028410 78678316527 60631558817 95194151160 56735188575 70217986094 78577134275 54201995611 95105973173 00313783875 35378759375 06548586327 28347913151 25506040092 83744944825 16205696602
 - The *only* thing random is the choice of digit to bet on - Fairness is about lack of correlation between digit choice and digit value
 - Choice of digit comes from
 $>$ Brain (neurons with quantum uncertainties)
 $>$ Random number generator \rightarrow seed \rightarrow time stamp (when you press ENTER) \rightarrow brain

$782354781636009341 / 216412199245863150302861829 / 4555 / 06 / 49838505494588586926995$ 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496

Further discussion

[^0]
Further discussion

3.1415926535 20899862803 11745028410 78678316527 60631558817 95194151160 56735188575 70217986094 78577134275
54201995611
95105973173
00313783875
35378759375
06548586327
28347913151
25506040092
83744944825
16205696602 78235478163 69092721079

Bet on the millionth digit of π

- The *only* thing random is the choice of digit to bet on
- Fairness is about lack of correlation between digit choice and digit value
- Choice of digit comes from
- Brain (neurons with quantum uncertainties)
$>$ Random number generator \rightarrow seed \rightarrow time stamp (when you press ENTER) \rightarrow brain

51888356998555620992192222 Payout: 46001653466804988627232791786
085784383827969976681454 Payout:
626945604241965285022210
287467764657573962413890865832645995813
595709825822620522489407726719478268482

$$
P_{\pi}=\lim _{N_{t o t} \rightarrow \infty} \frac{1}{N_{\text {tot }}} \sum_{\{i\}}\left(N_{\pi}^{i}-4.5\right)=0
$$

Further discussion

Classical Computer: The "computational degrees of freedom" of a classical computer are very classical: Engineered to be well isolated from the quantum fluctuations that are everywhere \rightarrow

- Computations are deterministic
- "Random" is artificial
- Model a classical billiard gas on a computer:
> All "random" fluctuations are determined by (or "readings of") the initial

10001000111101010

10001000101001010

11011000101001010

10001010111101010

10001000101101010 state.

Further discussion

Classical Computer: The "computational degrees of freedom" of a classical computer are very classical: Engineered to be well isolated from the quantum fluctuations that are everywhere

- Computations are deterministic
- "Random" is artificial
- Model a classical billiard gas on a computer:
> All "random" fluctuations are determined by (or "readings of") the initial state.

Further discussion

Classical Computer: The "computational degrees of freedom" of a classical computer are very classical: Engineered to be well isolated from the quantum fluctuations that are everywhere

- Computations are deterministic
- "Random" is artificial
- Model a classical billiard gas on a computer:
> All "random" fluctuations are determined by (or "readings of") the initial state.

Further discussion

Our ideas about probability are like our ideas about color:

- Quantum physics gives the correct foundation to our understanding
- Our "classical" intuition predates our knowledge of QM by a long long time, and works just fine for most things
- Fundamental quantum understanding needed to fix classical misunderstandings in certain cases.

Further discussion

Our ideas about probability are like our ideas about color:

- Quantum physics gives the correct foundation to our understanding
- Our "classical" intuition predates our knowledge of QM by a long long time, and works just fine for most things
- Fundamental quantum understanding needed to fix classical misunderstandings in certain cases.

Further discussion

Our ideas about probabilit color:
 - Quantum physics gives

 our understanding intuition
ig long time, and works just tine fol

[^0]: Bet on the millionth digit of π
 3.1415926535 20899862803 11745028410 78678316527 60631558817 95194151160 56735188575 70217986094 78577134275 54201995611 95105973173 00313783875 35378759375 06548586327 28347913151 25506040092 83744944825 16205696602 78235478163 69092721079

 - The *only* thing random is the choice of digit to bet on
 - Fairness is about lack of correlation between digit choice and digit value
 - Choice of digit comes from
 $>$ Brain (neurons with quantum uncertainties)
 $>$ Random number generator \rightarrow seed \rightarrow time stamp (when you press ENTER) \rightarrow brain
 > Etc
 - The only randomness in a bet on a digit of π is quantum!
 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496

