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Cosmic Inflation:

=» Great phenomenology, but

=» Original goal of explaining why
the cosmos is *likely* to take the

form we observe has proven
very difficult to realize.
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Cosmic Inflation:
=» Great phenomenology, but

=» Original goal of explaining why
the cosmos is *likely* to take the
form we observe has proven very
difficult to realize.

=» OR: Just be happy we have
equations to solve?
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OUTLINE

Big Bang & inflation basics
Eternal inflation
de Sitter Equilibrium cosmology

Cosmic curvature from de Sitter Equilibrium
cosmology
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Evolution of Cosmic Matter
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The curvature feature/“problem”
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In the SBB, flatness is an “unstable fixed point”:
Q) P 3H°
Q=— P, =——
2% 872'
1
a N2
\ Al —H2- 8z Kk
a ~ 3 a’
At T =10%GeV oC a_3, a_4 Domin[‘res
N with time
or — =10"%
g The "GUT scale”

Require to 55 decimal places to get o= p. today

1.0 What is Cosmic Inflation?
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In the SBB, flatness is an “unstable fixed point”:

| | 2
{2 SBB = "Standard Big Bang” | = 31
cosmology, or “cosmology without ¢ g
inflation”.
\ E 2 =H 2 _ 8_72. _L
a ~ 3 a’
At T :1016Gev oC a_3’ a_4 Domin['re.i:
. with time
or —=10"
A The "GUT scale”

Require to 55 decimal places to get o= p. today
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Gravitational instability: The Jeans Length

Sound speed

- Overdense regions of size > R,
collapse under their own weight.

If the size is < Ry, they just
oscillate

1.0 What is Cosmic Inflation? A. Albrecht Phy 262 2016
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SBB Homogeneity:

On very large scales the Universe is highly homogeneous,
despite the fact that gravity will clump matter on scales

greater than R Jeans

At the GUT epoch the observed Universe consisted
of 1079 Ry, s Sized regions.

=> The Universe was very smooth to start with.

NB: Flatness & Homogeneity=>» SBB Universe starts in
highly unstable state.

Suniv & 10~ Sth-max = 1047z M Sniv
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SBB Monopoles

* A GUT phase transition (or any other process) that
injects stable non-relativistic matter into the universe
at early times (deep in radiation era, ie T, =10 GeV)
will *ruin* cosmology:

Pwm

10 Normal

T 3
) Pwm (T.)(le [ opu@) X(Ti j H
— — - N

4
T IONormaI (T| )
' PNormal (TI ) (Tj

Monopole dominated Universe
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The monopole “problem”
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SBB Horizon

1089 causally disconnected re_gio/

at the GUT epoch

Horizon: The distance light has
traveled since the big bang:

= a(t) j —dt

1.0 What is Cosmic Inflation? A. Albrecht Phy 262 2016 31



The flatness, homogeneity & horizon features become
“problems” if one feels one must explain initial
conditions.

Basically, the SBB says the universe must start in a
highly balanced (or "fine tuned") state, like a pencil on
Its point.

Must/can one explain this?

Inflation says “yes"

1.0 What is Cosmic Inflation? A. Albrecht Phy 262 2016
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Now add cosmic inflation

Friedmann Eqn.
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Now add cosmic inflation
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Now add cosmic inflation

Friedmann Eqn.

A

2
HZZ(_j ED pk+pr+pm+'0DE)

Inflaton

bl
Curvature /

Relativistic’Matter

A. Albrecht Phy 262 2016

Non-relativistic
Matter

36



The inflaton:

~Homogeneous scalar field ¢ obeying

U
§+3H) =T (¢)

Cosmic damping Coupling to ordinary matter

All potentials have a “low roll” (overdamped) regime

where 1
P, :§¢2 +V (¢)zv(¢)zconst.oca“// \
\C.

N\

>
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The inflaton:

~Homogeneous scalar field ¢ obeying

¢+/37H¢ ‘F«\Q V'(

Cosmic damping Coupl/ng to ordinary matter

All potentials have a “low roll” (overdamped) regime

where 1
:_¢ +V (¢) = const‘// \
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Add a period of Inflation:
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With inflation, initially large curvature is OK:

Lk
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With inflation, early production of large amounts of non-relativistic
matter (monopoles) is ok :
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Inflation detail:
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Hubble Length
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Perturbations from inflation
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Perturbations from inflation
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Inflation detail:
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Inflation detail:
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The Basic Tools of Inflation:

Consider a scalar field with:

L (p)= %8,,@9“(0 -V (p)

V (o) >> | all space and time derivative
E> If V(%) (squared) terms

V(p) 0 0 0
':> Then Lo ve o 0
“710 0 V() O

0 0 0 -V(p)

dp
O) Whichimplies p=—p w=-1 ) gg~°

o g ~ e } Inflation
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A period of early inflation gives:

Flatness: @) 0=+ 1
P
[Ej _ 42— 8 k
P, = const.
Dominates over O, & Pn

during inflation

Homogeneity Sp

At horizon crossing: | p

Evaluate when k=H during inflation

st

¥

A suitably adjusted potential will give : |9k ~10”

1.0 What is Cosmic Inflation? A. Albrecht Phy 262 2016
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A period of early inflation gives:

Monopoles: @) Q= pﬁ —1
DR |
1 >a
Py Domma’res oV
during inflatiof (and Pu) )
3 q ~ th
Pu (&) (alj
Pv| _ LPwm (al) a-3Ht 0
Pl Pe@=Const | p,(a) )"

Monopoles are erased
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Inflation Horizon:

Inflation starts

Inflation ends

Here & Now
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I) Inflation in the era of WMAP
I.0 What is Cosmic Inflation?

IT) Inflation and the arrow of time
IT.1 Introduction

IT.2 Arrow of time basics

IT.3 Inflation and the arrow of time
IT.4 Implications
IT.5 Can the Universe Afford Inflation?

ITT) Conclusions

. . A. Albrecht Phy 262 2016
Cosmic Inflation and the Arrow of ime
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> Inflation:

* An early period of nearly exponential
("superluminal”) expansion set up the
“initial” conditions for the standard big
bang

» Predictions:
* Q. +o=1 (fo one part in 100,000 as measured)
* Characteristic oscillations in the CMB power
* Nearly scale invariant perturbation spectrum
* Characteristic Gravity wave, CMB Polarization etc

- efc

A. Albrecht Phy 262 2016 8
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WMAP

Table 3. “Best” Cosmological Parameters

Description Svimbaol Value +uncertainty  — uncertainty
Total density LA 1.02 (.02 (.02
Equation of state of quintessence W < —0.78 Q5% CL -
Dark energy density Ve 0.73 0.04 004
Baryon density 00, 0 00224 {1, 0009 (0, 0009
Baryon density o, 0.044 0,004 0,004
Barvon density (cm™) n, 2.5% 1077 0.1 s 1077 0.1 3¢ 1077
Matter density b i1 0.135 0008 0,009
Matter density 18, 0.27 (.04 .04

Light neutrino density

0,.h < L0076 Wit CL —

Bennett et al Feb 11 '03
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WMAP

Characteristic
oscillations in the CMB
power

Angular Scale

90° 2° 0.5° 0.2°
6000 T T T T

TT Cross Power

5000 Spectrum

Inflation
"Active" models

A - CDM All Data
WMAP

4000

3000

2000

wbnes b b b b b

hnd
|
e

Adapted from
Bennett et al Feb 11 '03

< Angular scale
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eNearly scale invariant
perturbation spectrum

WMAP

Table 3. “Best” Cosmological Parameters
Description Svimbol Value +uncertainty  — uncertainty
Power spectrum normalization (at kg = 0.05 Mpe™!)e A 0833 (086 (0.083
Scalar spectral index (at &y = 0.05 Mpe™! Hy .93 (.03 .03
Running index slope (at ko = 0.05 Mpe )°  dngfdInk  -0.031 0016 | 0018 .
¥ < 071 3% Cl
Zder | (=9 | |
Az | 35 2 2
I (.71 (.04 (.03

A. Albrecht Phy 262 2016

Bennett et al Feb 11 '03

81



WMAP

e Characteristic Gravity wave,
CMB Polarization etc

we =
3 — Reionization
g of -
= r ]
g o ] .
§ ; Inflation
P o .
: 3 " . "
: ; Active" models
0F -
;
. (; 1IO 4I0 160 2(l)0 I 4(I)0 ‘ 8(l)0 — 14I00 )

Multipole moment (/)

Bennett et al Feb 11 '03
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OUTLINE

Big Bang & inflation basics <=
Eternal inflation
de Sitter Equilibrium cosmology

Cosmic curvature from de Sitter Equilibrium
cosmology
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OUTLINE

Big Bang & inflation basics
Eternal inflation ¢=m
de Sitter Equilibrium cosmology

Cosmic curvature from de Sitter Equilibrium
cosmology
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Does inflation make the SBB
natural?

How easy is it to get inflation to
start?

What happened before inflation?

A. Albrecht Phy 262 2016
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Quantum fluctuations during slow roll:

<—RH—>

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H"
leading to a (random) quantum rate
of change:

Ap _ & 1o

e ="

Thus

by _H*

o ¢
measures the importance of
guantum fluctuations in the field
ew@w 2 2016
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Quantum fluctuations during slow roll:

<—RH—>

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H"
leading to a (random) quantum rate
of change:

Ag 2
At = =1
Thus

; 2
¢—?=H_ (~5—'0~10‘5 )

¢

measures the |mportance of
guantum fluctuations in the field
EW@El(l']ttP 2 2016 87



Quantum fluctuations during slow roll:

<—RH—>

For realistic
perturbations the
evolution is very
classical

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H"
leading to a (random) quantum rate
of change:

Ag — 'Q —H?

At
Thus

measures the importa
guantum fluctuations in the field
ewmw 2 2016
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Quantum fluctuations during slow roll:

<—RH—>

For realistic
perturbations the
evolution is very
classical

(But not as classical
as most classical
things we know!)

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H"
leading to a (random) quantum rate
of change:

Ag — 'Q —H?

At
Thus

measures the importa
guantum fluctuations in the field
ew@w 2 2016
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2.5

-1

If this region
“produced our
observable
universe”...




2.5

-1

It seems reasonable
to assume the field
was rolling up here
beforehand (classical
extrapolation)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Len

oth (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)

X 105

Not at all classical! I
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Substantial probability of
c fluctuating up the potential and

x 10 . . .
A continuing the inflationary
expansion = “Eternal Inflation”
4.
— 2
ST
02
g 0] e === cut A SN === AW OO
I
@)
° )
A}
-6}
-4 -3 -2 -1 0
og(ala) < 10°

Steinhardt 1982, Linde 1982, Vilenkin
1983, and (then) many others A. Albrecht Phy 262 2016 103



x 10

Substantial probability of

/ fluctuating up the potential and

)]

0
H

log[(R /R

continuing the inflationary
expansion = “Eternal Inflation”

Observable
Universe
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At end of self-reproduction our observable length scales were
exponentially below the Plank length (and much smaller than that
*during™* self-reproduction)!

b-.

)]

0
H

log[(R /R

Iog(a/ao) X 105
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At “formation” (Hubble length crossing) observable scales were just
above the Planck length

10
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£

10k

'y

iy
L~

)]

0
H

log[(R,/R

\

-60 -50 -40 -30 -20 -10 0
Iog(a/ao)

(Bunch Davies Vacuum)
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)]

0
H

log[(R /R

x 10

Substantial probability of
fluctuating up the potential and

continuing the inflationary
expansion = “Eternal Inflation”
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X 10

2.51

In self-reproduction regime,
guantum fluctuations compete

with classical rolling

oM,

100

200



Self-reproduction is a generic feature of almost
any inflaton potential:

During inflation

p+3Hp=-T ,p-V'(¢)

\4 &Q:sz H 3 .
3H¢~-V'(¢) b _o  N'(9)
\
.N—V’(¢)
T
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Self-reproduction is a generic feature of almost
any inflaton potential:

During inflation

p+3Hp=-T ,p-V'(¢)

| \4 ¢5Q _ H?2 N H 3 .
3Hg~-V'(4) 6 ¢ V'(9)
X', >1 for self-
b~ V'(9) reproduction
3H
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In self-reproduction regime,
guantum fluctuations compete
with classical rolling

200 -100 0 100 200
oM,
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NB: shifting focus to 1(t)
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Eternal inflation features

* Most of the Universe is always inflating
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Eternal inflation features

* Most of the Universe is always inflating
* Leads to infinite Universe, infinitely many pocket universes. The
self-reproduction phase lasts forever.
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Eternal inflation features

* Most of the Universe is always inflating
* Leads to infinite Universe, infinitely many pocket universes. The
self-reproduction phase lasts forever (globally).
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Eternal inflation features

* Most of the Universe is always inflating

* Leads to infinite Universe, infinitely many pocket universes. The
self-reproduction phase lasts forever.

* Inflation “takes over the Universe”, seems like a good theory of
initial conditions.
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Eternal inflation features

“True
infinity”
needed here
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Eternal inflation features

“True
infinity”
needed here

* Most of the Universe is always inflating

* Leads to infinite Universe, infinitely many pockt
self-reproduction phase lasts forever.

* Inflation “takes over the Universe”, seems like a good theory of
initial conditions.

* Need to regulate co’s to make pres

* For a specific time cutoff, the most recently produced pocket
universes are exponentially favored (produced in an
exponentially larger region). =)

Hernley, AA & Dray in prep

» Young universe problem
» End of time problem
» Measure problems

» State of the art: Instead of
making predictions, experts are
using the data to infer the

1 “correct measure” 1>




Multiply by 10°% to
get landscape story!

Eternal inflatio
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Eternal inflation features

“True

infinity”

Most of the Universe is always inflating
needed here

Leads to infinite Universe, infinitely many pocke
self-reproduction phase lasts forever.

Inflation “takes over the Universe”, seems like a good theory of
initial conditions.

Need to regulate oo’s to make predictions, typically use a cutoff.
For a specific time cutoff, the most recently produced pocket
universes are exponel > Multiple (o) copies of “you” in
exponentially larger the wavefunction =» Page’s “Born
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“All probabilities are
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infinity”
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* Most of the Universe is always inflating

* Leads to infinite Universe, infinitely many pockt
self-reproduction phase lasts forever.

* Inflation “takes over the Universe”, seems like a good theory of
initial conditions.

* Need to regulate o’s to make predictions, typically use a cutoff.

* For a specific time cutoff, the most recently produced pocket
universes are exponentially favored (produced in an
exponentially larger region). =)

» Young universe problem
» End of time problem
» Measure problems

> State of the art” Instead of
making predictions, the experts
are using the data to infer the

1 “correct measure” 1>




A problem has been detected and your calculation has been shut down
to prevent damage

RELATIVE_PROBABILITY_OVERFLOW

If this is the first time you have seen this stop error screen,
restart your calculation. If this screen appears again, follow
these steps:

Check to make sure all extrapolations are justified and equations
are valid. If you are new to this calculation consult your theory
manufacturer for any measure updates you might need.

If the problems continue, disable or remove features of the theory
that cause the overflow error. Disable options such as self-
reproduction or infinite time. If you need to use safe mode to
remove or disable components, restart your computation and utilize S,
to select holographic options.
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Or, just be happy we

SPT,

This work have equations to

solve?
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Eternal inflation features

“True

infinity”

Most of the Universe is always inflating
needed here

Leads to infinite Universe, infinitely many pock
self-reproduction phase lasts forever.
Inflation “takes over the Universe”, seems like a good theory of
initial conditions.

Need to regulate oo’s to make predictions, typically use a cutoff.
For a specific time cutoff, the most recently produced pocket
universes are exponentially favored (produced in an
exponentially larger region). =)

» Young universe problem
» End of time problem
» Measure problems

» State of thg :
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OUTLINE

Big Bang & inflation basics
Eternal inflation ¢=m
de Sitter Equilibrium cosmology

Cosmic curvature from de Sitter Equilibrium
cosmology

A. Albrecht Phy 262 2016
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- Macroscopic (or thermodynamic) arrow of
time emerges from a combination of:

* Dynamical trends or "attractors”

* Special initial conditions

* Choice of coarse graining

- Despite a completely reversible
microscopic world

NB: Not about *T
symmetry”

See H.D. Zeh The physical basis of the direction of time

. . A. Albrecht Phy 262 2016
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An Example:

Special initial conditions >

Dynamical trends or “attractors” > 1 1
PR R 2 P88 C
K N ..:..:.o ': ..o o ® '..:.. .o ':
.. ® ::. ....:.. - .‘::&... :.:...
5} o © ..: o'o. ..o. o. e 0@ ... o'o. :..

Choice of coarse graining »>

(Taking | <| , gravity unimportant)

Jeans

. . A. Albrecht Phy 262 2016
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Key roles of the arrow of time:

* Recording/Learning

- Harnessing energy
(actually “low
en’rropy")

) ) A. Albrecht Phy 262 2016 147
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Key roles of the arrow of time (cont.):

- Quantum Measurement

S5
Everett < same old

= = =
“thermodynamic” arrow of time

. . A. Albrecht Phy 262 2016
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- Macroscopic (or thermodynamic) arrow of
time emerges from a combination of:

* Dynamical trends or "attractors”
* Special initial conditions Most Fundamental

* Choice of coarse graining

Entropy, laws of thermodynamics, counting number of
states efc:

-Ways to quantify the above

- "Icing on the cake”

. . A. Albrecht Phy 262 2016
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Now consider | >1,  : gravity very important

Jeans *

A completely different
trend/attractor:

Gravitational Collapse

Circinus Galaxy Hubble Space Telescope * WFPC2
NASA and A. Wilson (University of Maryland) ® STScl-PRC00-37

. . A. Albrecht Phy 262 2016
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| >1. . gravity very important

Jeans *

Equilibrium under
gravitational collapse:

Black Hole

(the state of ultimate
collapse)

Ground

Sbh — 47 M g HST ® WFPC2

(S, hot as well developed as ordinary entropy, but good enough for
our purposes as a way to quantify a dynamical trend.)

. . A. Albrecht Phy 262 2016
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The Punch Line:

The thermodynamic arrow of time originates with the
very special initial conditions of the cosmos:

The early universe is very homogeneous on scales | > |
=> very far from Eqm. (= black hole)

Jeans

> Penrose

Univ

S, 1078, . =10%47M

Univ

Cosmic Microwave
Background uniform to one
part in 10°

. . A. Albrecht Phy 262 2016 1
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- The everyday link to gravitational collapse

; ] A. Albrecht Phy 262 2016 1
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e ——EE

The everyday link to gravitational collapse

; ] A. Albrecht Phy 262 2016 1
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Standard inflation spiel begins:

Cosmological problems of standard big bang:
Universe starts far from dynamical trend:
-Flat
-Homogeneous
-Horizons prevent dynamical explanation

Q: How can this fact be explained?

But isn't starting far from the dynamical trend exactly
what is required to explain the arrow of time?

And when do we ever explain initial conditions anyway?

I1.3 Inflation and the arrow of time " " 222 158



Warm up 1. Big Bang Nucleosynthesis
Prediction of abundances.

Minutes: 1/60 1 5 15 60

10

But doesn't the
answer just
depend on the
initial state?

Mass _F raction =

10 S 10"
Temperature (10 K)

Time =2

10

Species

Figure: Burles, Nollett, &Turner
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Warm up 1. Big Bang Nucleosynthesis:
Nuclear Statistical ("chemical”) equilibrium (attractor) erases

initial conditions debendence.
Minutes: 1/60 1 5 15 60

Mass Fraction =

Coarse Graining:

) 0
Temperature (109 K) gUST GSk GbOUT mass
he el ractions
A. Albrecht Phy 262 2016 160
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Warm up 2: Gas inice
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Warm up 2: Gas inice Time 3

Eg

e e .. .. _ - A AlbrechtPhy 2622016
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Warm up 2: Gas inice

Internal egm time <« freezing time

=> Internal egm. set initial conditions

for condensation & final frozen state.

1.3 Inflation and the arrow of timé\' Albrecht Phy 262 2016
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End warm up... now the real thing:
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Key ingredient:

G =38rl

Cosmological constant => different
gravitational at attractor:

de Sitter space

<__- Perfectly flat, homogeneous, >

Equivalent to "perfect”
potential dominated state

SdS o

37
A

Gibbons & Hawking,
See also Bousso

exponentially expanding properties of Big Bang initial state

I1.3 Inflation and the arrow of tim [ Abrecht Phy 262 2076
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/A can be mimicked by a scalar field ina
special "potential dominated state”

. B

Inflaton field (P can turn /\ off onand off

Inflation: Let the inflaton field turn /\ ¢
on and leave it on for *many* de Sitter
equilibration times, then decay into ordinary
matter.

A standard "big bang" (arrow of time and all)
IS created.

I1.3 Inflation and the arrow of time " " 2 # 167



The Inflaton:

Consider a scalar field with:

L (0(9) =2 2,0()0“p(X) -V (p(X))

all space and time
derivative (squared)
terms

Inflation

827GV (@) ~ A

I1.3 Inflation and the arrow of tim [ Abrecht Phy 262 2076
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Comparisons:

System Initial Conditions

‘Nucleosynthesis

Created by early
time attractor (eqm)

-Slow Freeze

i Y R % %Y
) | (.
U, 5 5 5 Yy [ 5, % o

‘Inflation

/)  Created by early
°/ time attractor (eqm)
0

Created by early
time attractor (eqm)

I1.3 Inflation and the arrow of tim [ Abrecht Phy 262 2076
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Comparisons: But driven by non-
egm degree of
System Tnitial Conditions freedom

‘Nucleosynthesis

Created by early Background
time attractor (egm) Spacetime
in subspace

-Slow Freeze

t\“é

‘Inflation

Created by early Out of egm ice
time attractor (eqm)
in subspace

time attractor (eqm) field configuration
in subspace Issues with very
small scales!

1.3 Inflation and the arrow of timé\' Albrecht Phy 262 2016 170
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Does inflation
-Predict the arrow of time? (Sets up IC's for Big Bang)

-Depend on the arrow of time? (Requires special initial
state of inflaton etc.)

II.4 Implicatlons A. Albrecht Phy 262 2016 173



Comment on how we use
knowledge ("A" word!)

Total knowledge about
the universe—>

Output

Input
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Total knowledge about
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Comment on the "A" word:

Total knowledge about
the universe—>

Output
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Comment on the "A" word:

Total knowledge about
the universe—>

Input Ou‘rpu’r
S — Q = a—

v“«
< >
PFA
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Q: To what extent should our arrow of
time (smooth initial state of Big Bang)
best used as INPUT, rather than
OUTPUT?

A: The arrow of time (smooth initial state
of Big Bang) can NOT be 100% output.

The very nature of the arrow of time
requires initial conditions that are not
completely generic

II.4 /mp/ICOtlonS A. Albrecht Phy 262 2016 180



=» What role inflation?

What Role

-“Dominant channel” into Big Bang (Uses attractor behavior and
exponential volume factors to maximize impact)

-Gives package deal: Universe very large, flat, and with particular
perturbations (falsifiable!).

-Answers Boltzmann's concerns about typical
regions with arrow of time being much smaller and
“shorter” then we experience. (inflation as
amplifier). [Also modern cosmological version.]

- Answers “How did our Universe come about?”

NB: In the spirit of Linde’s “chaotic inflation”

1.4 ImpliCGtiOl’)S A. Albrecht Phy 262 2016 181






Boltzmann's "cosmology"”:
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Boltzmann's "cosmology"”:
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Boltzmann's "cosmology”
appeared to make very
strange predictions:
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Boltzmann's "cosmology"”:
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Boltzmann's "cosmology"”:

(Boltzmann's brain)

1.4 Implications A. Albrecht Phy 262 2016 194



Boltzmann's "cosmology"”:

®
ee” ® %o
@ o oo
oo o0
00 )
3 °
e o °
°
A. Albrecht Phy 262 2016 195

1.4 Implications



Boltzmann's "cosmology"”:
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Boltzmann's "cosmology"”:
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Inflation (**schematic**):
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Inflation (**schematic**):
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Inflation (**schematic**):

The "“rare
fluctuation” is in
the inflaton field

V(p)>> |all space and
4 ) time derivative
(squared) terms

. . . recht Ph
1.4 Implications A AlbrechtPhy 262 2016 200



Special package
of features
predicted by

Inflation (**schematic**):

inflation

N o
Inflation )
exponentially

N Bohents
expands the Reheateu
volume . regions give

N

J

A. Albrecht Phy 262 2016
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OUTLINE

Big Bang & inflation basics
Eternal inflation
de Sitter Equilibrium cosmology <zmm

Cosmic curvature from de Sitter Equilibrium
cosmology
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de Sitter Equilibrium (dSE) cosmology

* Take ideas from Holography, A to construct a
finite cosmology
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de Sitter Equilibrium (dSE) cosmology

* Take ideas from Holography, A to construct a
finite cosmology

e Build on initial motivation re the appeal of an
equilibrium system (no “initial conditions”)

* Seek the “Bohr Atom” of cosmology

* A counterpoint to the infinities of eternal
inflation

* Unabashedly exploit uncertainties about the
fundamental physics (i.e. when continuum field
theory is good, and when it breaks down) to
construct a realistic cosmology

AA: arXiv:1104.3315
AA: arXiv:0906.1047
AA & Sorbo: hep-th/0405270
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The de Sitter horizon
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ast horizon of
observation event at

this time

Past Horizon: Physical distance from (comoving) observer of a photon that will
reach the observer at the time of the observation.
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The de Sitter horizon
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Implications of the de Sitter horizon

e Maximum entropy S o Ao -2 _(Ajl
A o A
3

* Gibbons-Hawking Temperature
Tow =H, =\|——Ps

Gibbons & Hawking 1977



“De Sitter Space: The ultimate equilibrium for the universe?

Horizon

Sc A=H?=A"

/87Z'G
Tew =H, = TPA
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Implications of the de Sitter horizon

e Maximum entropy S o Ao -2 _(Ajl
A o A
3

* Gibbons-Hawking Temperature

v Only a finite volume ever observed

* If A istruly constant: Cosmology as fluctuating

\/ Egm.?

dSE cosmology

v/* Maximum entropy — 5 finite Hilbert space of
N SIN Banks & Fischler & Dyson et al.
dimension =€
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Equilibrium Cosmology
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Equilibrium Cosmology

=» An egm. theory does not require any theory of initial
conditions. The probability of appearing in a given state is
given entirely by stat mech, and is thus “given by the
dynamics”.

=» If you know the Hamiltonian you know how to assign
probabilities to different states without any special theory of
initial conditions.

Dyson et al 2002
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Concept:

Realization:

- - -

“de Sitter Space”
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Fluctuating from dSE to inflation:

* The process of an inflaton fluctuating from late time
de Sittter to an inflating state is dominated by the
“Farhi-Guth Guven” (FGG) process

* A “seed” is formed from the Gibbons-Hawking
radiation that can then tunnel via the Guth-Farhi
instanton.

* Rate is well approximated by the rate of seed
formation: _Ms _Mms

oc e Ten _— e H

m, = p, (cH;*)’ =0.0013kg

* Seed mass: 2 \1/2
((1016Gev) J

L



Fluctuating from dSE to inflation:

* The process of an inflaton fluctuating from late time
de Sittter to an inflating state is dominated by the
“Farhi-Guth Guven” (FGG) process

* A “seed” is formed from the Gibbons-Hawking
radiation that can then tunnel via the Guth-Farhi

instanton.
* Rate is well approximated by the rate of seed
formation: M ms

 Seed mass: . 2 \1/2
A\ (10*°GeV )
m, = p, (cH,*)" 5(0.0013kg]
L)

Small seed can produce an entire universe =»
o e V24
Evade “Boltzmann Brain A%Qegtlgymmm
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Fluctuating from dSE to inflation:

* The process of an inflaton fluctuating from late time

I Ir:](gs M = 0 not a problem for G-F
process (A. Ulvestad & AA 2012)

ormed from

radiation that can then tul See also Freivogel et al 2006,
instanton. Banks 2002

* Rate is well approximated by the rate of seed
formation: _Ms _Ms

 Seed mass: . 2 \1/2
L (10*Gev)
m, = p, (cH,*) =0.0013kg
L)

A. Albrecht Phy 262 2016
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time

.S 5
N ~e" <& degrees of

Egm. .
freedom temporarily
Seed break off to form baby
Fluctuation ™ universe:
Tunneling (’/ @ Inflation
Evolution (O Radiation
Evolution - Matter
Evolution .de Sitter

~

Recombination
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S S
Eqm N ~e” <e™degrees of
freedom temporarily

break off to form baby
universe:

Seed
Fluctuation ™

_______
________
- ~

Tunneling @ Inflation

(O Radiation
- Matter

.de Sitter

“Right
Timescale”

Evolution

Recombination
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Implications of finite Hilbert space N = e

e Recurrences

* Egm.

* Breakdown of continuum field theory
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Implications of finite Hilbert space N = e

* Recurrences > >

-
* Egm.

* Breakdown of continuum field theory -
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log[L/(cH;)]

This much inflation fills one de Sitter horizon

el 44U -ouU -ZU -1U U 1U

Iog(a/ao)
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(discuss “superluminal
expansion”)
10

O-

-10 4

-20 1

-30 1

log[L/(cH;)]

40

-50 4

-60 A

.70 — This much inflation fills one de Sitter horizon

-70 -60 DU =Z¥U -5U =ZU -1IU U IU

Iog(a/ao)
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]

log[L/(cH

- ]

This much irmation fills more than one de Sitter
horizon, generating total entropy > Sy =S,

and affecting regions beyond the horizon of the
observer




log[L/(cH)]
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log[L/(cH)]

10 L L L L L L
o] ° In dSE cosmology this
region is unphysical.
104 © Breakdown of effective .~
field theory prevents -~
20+ inflation from filling.~ o
more than one de Sitter,.~”
-30 - horizon o
1‘,.’ ¢’l’
_40 i ,,'/ ,,,,,'
’,’ ’l/,’
501
—~ )
_60-
—70 T T T T T T
.70 -60  -50 40 30 =20 0

“Equivalent” to Banks-Fischler holographic
constraint on number of e-foldings of inflation
(D Phillips & AA in prep)




2.5

1<

4

10

To get eternal inflation, we made what we
thought was a simple extrapolation, but

wound up with a highly problematic theory /
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4
2 5520

dSE: The extrapolation that leads to eternal inflation is
naive, in that it neglects the breakdown of effective
field theory. dSE uses holographic arguments to
estimate this breakdown.

— 1.5} Breakdown of
« O effective field
= theory
> 1F (extrapolation

invalid)

300 -100 0 100 200
oM,
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Fluctuating from dSE to inflation:

* The process of an inflaton fluctuating from late time
de Sittter to an inflating state is dominated by the
“Farhi-Guth Guven” (FGG) process

* A “seed” is formed from the Gibbons-Hawking
radiation that can then tunnel via the Guth-Farhi

instanton.
* Rate is well approximate the rate of seed
formation _my
ocp ToH — Large 0
exponentially
favored =»
* Seed mass: I \D2 _
)3 (10*Gev) saturation of
m, = p, (cH,*) =0.0013kg 7 4SE bound
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]

log[L/(cH

dSE bound on
inflation given by
past horizon

- ————— |

A variety of inflation
models, all saturating
the dSE bound
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OUTLINE

Big Bang & inflation basics
Eternal inflation
de Sitter Equilibrium cosmology =

Cosmic curvature from de Sitter Equilibrium
cosmology
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de Sitter Equilibrium cosmology
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dSE Cosmology and cosmic curvature

* The Guth-Farhi process starts inflation with an

initial curvature set by the curvature of the
FGG Bubble Q;

Inflation dilutes the curvature, but dSE
cosmology has a minimal amount of inflation



Friedmann Eqn.

oC a_2
]

2
ay 8 l
HZZ(_j :?EG(A +ﬂpk+pr+pm+'0DE)

/
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Evolution of
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Banks & Fischler & Dyson et al.
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AA: arXiv:1104.3315
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dSE Cosmology and cosmic curvature

* The Guth-Farhi process starts inflation with an

initial curvature set bg the curvature of the
Guth-Farhi bubble €2,

* |nflation dilutes the curvature, but dSE
cosmology has a minimal amount of inflation

- B
1 Qf

(]
QQ F'?n _|_ P L 1
PA PA

(). =

where

( o P > dx

g ) = 0

PA  PA 0 .2 \/ ,—34'3;[11 —2 P -
Y + x o + 1
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Predicted €2,
from dSE cosmology is:

Independent of almost
all details of the
cosmology

Just consistent with
current observations
Will easily be detected
by future observations
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Predicted €,

from dSE cosmology is:

* Independent of almost
all details of the
cosmology

e Just consistent with
current observations

* Will easily be detected
by future observations

Work ig progress on expected values
of €2, (Andrew Ulvestad & AA)
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Predicted €,

from dSE cosmology is:

* Independent of almost
all details of the
cosmology
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current observations
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by future observations

Work ig progress on expected values
of €2, (Andrew Ulvestad & AA)

0.04

0.02F

001

00

-0.01

—0.02|

— 07 =05
— 07 =025
— Y =01

—0.03H

Image by
Surhud More

WMAP7+BAO+SN_CONST

—0.04 '
0.0 0.2

A. Albrecht Phy 262 2016

0.4

0.6 0.8

Pl P,

262

1.0



]

log[L/(cH

2 2

R . .
Pe _| Hel _[ Pro | is given by this gap
pc HO Rk
O L L LY L L ) L
Evolution of iy
T S . | e
curvature radius = a ca K g
k |
-10F . X ’,/ -
Curvature radius set
. ey QB A //'
20t by initial curvature 32, 7 - :
-30} o ]
40k // -
2 ,’," / & . . .
sob , A variety of inflation
s d Y .
= S models, all saturating
60r the dSE bound
_70 L L L L L L L
-70 -60 -50 -40 -30 -20 -10 0 10



Conclusions

* The search for a “big picture” of the Universe that explains
why the region we observe should take this form has proven
challenging, but has generated exciting ideas.

* We know we can do science with the Universe

* It appears that there is something right about cosmic
inflation

* dSE cosmology offers a finite alternative to the extravagant
(and problematic) infinities of eternal inflation (plus, no initial
conditions problem)

* Predictions of observable levels of cosmic curvature from dSE
cosmology will give an important future test
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