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Cosmic Inflation:

 Great phenomenology, but 

 Original goal of explaining why 
the cosmos is *likely* to take the 
form we observe has proven 
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Cosmic Inflation:

 Great phenomenology, but 

 Original goal of explaining why 
the cosmos is *likely* to take the 
form we observe has proven very 
difficult to realize. 

 OR:  Just be happy we have 
equations to solve?



OUTLINE

1. Big Bang & inflation basics

2. Eternal inflation

3. de Sitter Equilibrium cosmology

4. Cosmic curvature from de Sitter Equilibrium 
cosmology

A. Albrecht Phy 262 2016 5



OUTLINE

1. Big Bang & inflation basics

2. Eternal inflation

3. de Sitter Equilibrium cosmology

4. Cosmic curvature from de Sitter Equilibrium 
cosmology

A. Albrecht Phy 262 2016 6



Friedmann Eqn. 

 
2

2 8

3
k r m DE

a
H G

a


   

 
     
 

A. Albrecht Phy 262 2016 7



Friedmann Eqn. 

 
2

2 8

3
k r m DE

a
H G

a


   

 
     
 

A. Albrecht Phy 262 2016 8



Friedmann Eqn. 

 
2

2 8

3
k r m DE

a
H G

a


   

 
     
 

A. Albrecht Phy 262 2016 9

Hubble parameter 
(“constant”, because 
today it takes 
~10Billion years to 
change appreciable)
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Evolution of Cosmic Matter
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Evolution of Cosmic Matter
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Evolution of Cosmic Matter
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Gravitational instability: The Jeans Length

I.0 What is Cosmic Inflation? 

i
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SBB Homogeneity:

On very large scales the Universe is highly homogeneous, 
despite the fact that gravity will clump matter on scales 

greater than RJeans

At the GUT epoch the observed Universe consisted 
of 1079 RJeans sized regions.

The Universe was very smooth to start with.

NB: Flatness & Homogeneity SBB Universe starts in 
highly unstable state.

35 35 210 10 4Univ bh Max UnivS S M 

 

i

I.0 What is Cosmic Inflation? A. Albrecht Phy 262 2016
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SBB Monopoles

i

I.0 What is Cosmic Inflation? 

• A GUT phase transition (or any other process) that 
injects stable non-relativistic matter into the universe 
at early times (deep in radiation era, ie Ti =1016 GeV) 
will *ruin* cosmology:
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t=0

Here & 
Now

SBB Horizon

1080 causally disconnected regions 
at the GUT epoch

i

I.0 What is Cosmic Inflation? 
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Horizon:  The distance light has 
traveled since the big bang:
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32I.0 What is Cosmic Inflation? 

The flatness, homogeneity & horizon features become 
“problems” if one feels one must explain initial 
conditions.   

Basically, the SBB says the universe must start in a 
highly balanced (or “fine tuned”) state, like a pencil on 
its point.

Must/can one explain this?

Inflation says “yes”

A. Albrecht Phy 262 2016
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The inflaton:

~Homogeneous scalar field        obeying
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With inflation, initially large curvature is OK:
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With inflation, early production of large amounts of non-relativistic 
matter (monopoles) is ok :
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Inflation detail:
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Evolution of Cosmic Length
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Evolution of Cosmic Length
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Evolution of Cosmic Length
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Evolution of Cosmic Length
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Evolution of Cosmic Length
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Evolution of Cosmic Length
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The Basic Tools of Inflation:

Consider a scalar field with:
1

( ) ( )
2

V

      L

If ( )V   all space and time derivative 
(squared) terms

Then
( ) 0 0 0

0 ( ) 0 0

0 0 ( ) 0

0 0 0 ( )

V

V
T

V

V













 
 

 
 
   

Which implies p   0
d

da




~ Hta e Inflation 

w=-1

i
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A period of early inflation gives:

Flatness:
2

2

2

8

3

a k
H

a a




 
   

  a

W

1

Dominates over      & 
during inflation

2

2

'

2
H

H

H HV
const




  

   
      

  

Homogeneity

At horizon crossing:

510H
A suitably adjusted potential will give :

i

I.0 What is Cosmic Inflation? 

1
c




W  

Evaluate when k=H during inflation

.const 

r m
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A period of early inflation gives:

Monopoles:

a

W

1

Dominates over      & 
during inflation (and      )

i

I.0 What is Cosmic Inflation? 



1

1

1

3

1

3

( )
( )

( ) (
0

)

M

M HtM

a

a
a

a Const a

a

a
e

 




 

 


 
 
   


   





M

Monopoles are erased

~ Hta e

2

2

2

8

3

a k
H

a a




 
   

 

1
c




W  

r m
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Inflation Horizon:

Here & Now

Inflation starts

Inflation ends

i
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I) Inflation in the era of WMAP

I.0 What is Cosmic Inflation?

I.1 Successes

III) Conclusions

II) Inflation and the arrow of time

II.1 Introduction

II.2 Arrow of time basics

II.3 Inflation and the arrow of time

II.4 Implications

II.5 Can the Universe Afford Inflation?

Cosmic Inflation and the Arrow of Time
A. Albrecht Phy 262 2016



78I.1 Successes

 Inflation:

• An early period of nearly exponential 
(“superluminal”) expansion set up the 
“initial” conditions for the standard big 
bang

 Predictions:

• Wtotal=1 (to one part in 100,000 as measured)

• Characteristic oscillations in the CMB power 

• Nearly scale invariant perturbation spectrum 

• Characteristic Gravity wave, CMB Polarization etc

• etc

A. Albrecht Phy 262 2016



• Wtotal=1

Bennett et al Feb 11 ‘03

WMAP
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• Characteristic 
oscillations in the CMB 
power 

Adapted from 

Bennett et al Feb 11 ‘03

WMAP

“Active” models

Inflation

T
e
m
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re

 
Po
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

 Angular scale
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•Nearly scale invariant 
perturbation spectrum

Bennett et al Feb 11 ‘03

WMAP

  1 sn

H k

k Ak









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•Characteristic Gravity wave, 
CMB Polarization etc

Bennett et al Feb 11 ‘03

WMAP

“Active” models

Inflation

TxE polarization 
power
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OUTLINE

1. Big Bang & inflation basics

2. Eternal inflation

3. de Sitter Equilibrium cosmology

4. Cosmic curvature from de Sitter Equilibrium 
cosmology
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1. Big Bang & inflation basics

2. Eternal inflation

3. de Sitter Equilibrium cosmology

4. Cosmic curvature from de Sitter Equilibrium 
cosmology
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Does inflation make the SBB 
natural?

How easy is it to get inflation to 
start?

What happened before inflation?

A. Albrecht Phy 262 2016 85



HR

Quantum fluctuations during slow roll: 

A region of one field coherence 
length (           ) gets a new quantum 
contribution to the field value from 
an uncorrelated commoving mode 
of size                 in a time                 
leading to a (random) quantum rate 
of change:

Thus

measures the importance of 
quantum fluctuations in the field 
evolution

HR

H  1t H  

2
Q H

 


2

Q H
t





 


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For realistic 
perturbations the 
evolution is very 
classical 
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Quantum fluctuations during slow roll: 

A region of one field coherence 
length (           ) gets a new quantum 
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For realistic 
perturbations the 
evolution is very 
classical 
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(But not as classical 
as most classical 
things we know!)
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“produced our 
observable 
universe”…
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It seems reasonable 
to assume the field 
was rolling up here 
beforehand (classical 
extrapolation)
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Evolution of Cosmic Length
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Steinhardt 1982, Linde 1982, Vilenkin
1983, and (then) many others
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At end of self-reproduction our observable length scales were 
exponentially below the Plank length (and much smaller than that 
*during* self-reproduction)!
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At “formation” (Hubble length crossing) observable scales were just 
above the Planck length

(Bunch Davies Vacuum)
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quantum fluctuations compete 
with classical rolling 
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Self-reproduction is a generic feature of almost 
any inflaton potential: 

 3H V      

During inflation 

 3H V  

 
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

 

2 3 3/2
Q H H V

V V



  
  
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Self-reproduction is a generic feature of almost 
any inflaton potential: 

 3H V      

During inflation 

 3H V  

 
3

V

H







 

2 3 3/2
Q H H V

V V



  
  

 

1 for self-
reproduction 
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Linde & Linde
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NB: shifting focus to  l t



2 5 S

Hd e R 

2 /S

Ht R c

New pocket (elsewhere)

t

Classically 
Rolling

Classically Rolling

Self-reproduction regime

114A. Albrecht Phy 262 2016



3 5 S

Hd e R 

3 /S

Ht R c

New pocket (elsewhere)

t

Classically 
Rolling

Self-reproduction regime

115A. Albrecht Phy 262 2016



500 5 S

Hd e R 

500 /S

Ht R c

New pocket (elsewhere)

t

502r e d

Classically 
Rolling

Self-reproduction regime

116A. Albrecht Phy 262 2016



1000 5 S

Hd e R 

1000 /S

Ht R c

New pocket (elsewhere)

1002r e d

t

Classically 
Rolling

Self-reproduction regime
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t
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1395 5 S

Hd e R 
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New pocket (elsewhere)
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t

Classically 
Rolling

Self-reproduction regime
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1991 5 S

Hd e R 

2000 /S

Ht R c

New pocket (elsewhere)

1989r e d

t

Classically 
Rolling

Self-reproduction regime
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534395 5 S Iend

H Hd e R R  

 602,785 /S

Ht R c

New pocket (elsewhere)

534393r e d

t

Classically 
Rolling

Self-reproduction regime
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534395 5 S Iend

H Hd e R R  

New pocket (elsewhere)

534393r e d

2 /Iend

Ht R c

t

Reheating

Self-reproduction regime
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534395 5 S Iend

H Hd e R R  

New pocket (elsewhere)

534393r e d

3.2 /Iend

Ht R c

t

Radiation 
Era

Self-reproduction regime

123A. Albrecht Phy 262 2016



Eternal inflation features

• Most of the Universe is always inflating
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A problem has been detected and your calculation has been shut down 
to prevent damage

RELATIVE_PROBABILITY_OVERFLOW

If this is the first time you have seen this stop error screen,
restart your calculation. If this screen appears again, follow 
these steps:

Check to make sure all extrapolations are justified and equations 
are valid. If you are new to this calculation consult your theory 
manufacturer for any measure updates you might need. 

If the problems continue, disable or remove features of the theory 
that cause the overflow error. Disable options such as self-
reproduction or infinite time.  If you need to use safe mode to 
remove or disable components, restart your computation and utilize    
to select holographic options.  

S
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 State of the art: Instead of 
making predictions, the experts 
are using the data to infer the 
“correct measure”

“True 
infinity” 

needed here

See upcoming 
discussion of 
probabilities 

for new angle
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3. de Sitter Equilibrium cosmology

4. Cosmic curvature from de Sitter Equilibrium 
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I) Inflation in the era of WMAP

I.0 What is Cosmic Inflation?

I.1 Successes

I.2 Future tests

I.3 Theoretical advances

III) Conclusions

II) Inflation and the arrow of time

II.1 Introduction

II.2 Arrow of time basics

II.3 Inflation and the arrow of time

II.4 Implications
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See H.D. Zeh The physical basis of the direction of time

- Macroscopic (or thermodynamic) arrow of 
time emerges from a combination of:

• Dynamical trends or “attractors”

• Special initial conditions

• Choice of coarse graining

- Despite a completely reversible 
microscopic world

II.2 Arrow of time basics

NB: Not about “T 
symmetry”
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Jeansl l ,  gravity unimportant)(Taking

Dynamical trends or “attractors” 

Special initial conditions 

Choice of coarse graining 

An Example:

II.2 Arrow of time basics
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• Recording/Learning

• Harnessing energy 
(actually “low 
entropy”)

Key roles of the arrow of time:

II.2 Arrow of time basics
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Key roles of the arrow of time (cont.):

• Quantum Measurement

Everett  same old 
“thermodynamic” arrow of time 

II.2 Arrow of time basics
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- Macroscopic (or thermodynamic) arrow of 
time emerges from a combination of:

• Dynamical trends or “attractors”

• Special initial conditions

• Choice of coarse graining

Most Fundamental

Entropy, laws of thermodynamics, counting number of 
states etc:

-Ways to quantify the above

- “Icing on the cake”

II.2 Arrow of time basics
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Time 1 Time 2 Time 3

II.2 Arrow of time basics
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Jeansl l :  gravity very importantNow consider

A completely different 
trend/attractor:  

Gravitational  Collapse

II.2 Arrow of time basics
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:  gravity very important

Equilibrium under 
gravitational collapse:

Black Hole

(the state of ultimate 
collapse)

24bhS M

(Sbh not as well developed as ordinary entropy, but good enough for 
our purposes as a way to quantify a dynamical trend.)

II.2 Arrow of time basics

Jeansl l
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The Punch Line:

The thermodynamic arrow of time originates with the 
very special initial conditions of the cosmos:

The early universe is very homogeneous on scales      
 very far from Eqm. (= black hole)

35 35 210 10 4Univ bh Max UnivS S M 

 

Cosmic Microwave 
Background uniform to one 
part in 105

Penrose

II.2 Arrow of time basics

Jeansl l
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The everyday link to gravitational collapse

II.2 Arrow of time basics
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The everyday link to gravitational collapse

II.2 Arrow of time basics
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Standard inflation spiel begins:

Cosmological problems of standard big bang:

Universe starts far from dynamical trend:

-Flat

-Homogeneous

-Horizons prevent dynamical explanation 

Q: How can this fact be explained?

But isn’t starting far from the dynamical trend exactly 
what is required to explain the arrow of time?

And when do we ever explain initial conditions anyway?

A. Albrecht Phy 262 2016
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Warm up 1: Big Bang Nucleosynthesis
Prediction of abundances.

Time 

M
as

s 
F

ra
ct

io
n 


Species

But doesn’t the 
answer just 
depend on the 
initial state?

Figure: Burles, Nollett, &Turner

II.3 Inflation and the arrow of time
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Warm up 1: Big Bang Nucleosynthesis:
Nuclear Statistical (“chemical”) equilibrium (attractor) erases 
initial conditions dependence. 

Time 

M
as

s 
F

ra
ct

io
n 


Eq. Time

Time to species freeze-out

Coarse Graining:

Just ask about mass 
fractions

II.3 Inflation and the arrow of time
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Warm up 2: Gas in ice

Ice

Insulator

Ice

Time 1

Insulator

II.3 Inflation and the arrow of time
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Ice

Insulator

Ice

Time 2

Insulator

Warm up 2: Gas in ice
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Ice

Insulator

Ice

Time 3

Insulator

Frozen

Warm up 2: Gas in ice

II.3 Inflation and the arrow of time
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Internal eqm time << freezing time

 Internal eqm. set initial conditions 
for condensation & final frozen state.

Warm up 2: Gas in ice

II.3 Inflation and the arrow of time
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End warm up… now the real thing:

II.3 Inflation and the arrow of time
A. Albrecht Phy 262 2016
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Key ingredient:

8G T 

Cosmological constant => different 
gravitational at attractor:

de Sitter space

- Perfectly flat, homogeneous, 
exponentially expanding Properties of Big Bang initial state

3
dSS





Gibbons & Hawking, 
See also Bousso

Equivalent to “perfect” 
potential dominated state

II.3 Inflation and the arrow of time
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 Can be mimicked by a scalar field in a 
special “potential dominated state”

Inflaton field        can turn            on and off 
eff

Inflation:  Let the inflaton field turn              
on and leave it on for *many* de Sitter 
equilibration times, then decay into ordinary 
matter.

A standard “big bang” (arrow of time and all) 
is created.  

eff

II.3 Inflation and the arrow of time
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The Inflaton:

Consider a scalar field with:

1
( ( )) ( ) ( ) ( ( ))

2
x x x V x

      L

If )(V all space and time 
derivative (squared) 
terms

Htea ~

Inflation 

0
a






8 ( )GV   

V



Quantum 

fluctuations

II.3 Inflation and the arrow of time
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Comparisons:

System Initial Conditions

•Nucleosynthesis

•Slow Freeze

•Inflation

V



Created by early 
time attractor (eqm)

Created by early 
time attractor (eqm)

Created by early 
time attractor (eqm)

II.3 Inflation and the arrow of time
A. Albrecht Phy 262 2016



170

Comparisons:

System Initial Conditions

•Nucleosynthesis

•Slow Freeze

•Inflation

V



Created by early 
time attractor (eqm) 
in subspace

Created by early 
time attractor (eqm) 
in subspace

Created by early 
time attractor (eqm) 
in subspace

But driven by non-
eqm degree of 
freedom

Background 
Spacetime

Out of eqm ice

Special Inflaton 
field configuration
Issues with very 
small scales!

II.3 Inflation and the arrow of time
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Does inflation 

-Predict the arrow of time? (Sets up IC’s for Big Bang)

-Depend on the arrow of time? (Requires special initial 
state of inflaton etc.)

II.4 Implications
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Comment on how we use 
knowledge (“A” word!)

Total knowledge about 
the universe

Input Theory Output

II.4 Implications
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Input Theory Output

The best science will use up less 
here and produce more here

II.4 Implications
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Q: To what extent should our arrow of 
time (smooth initial state of Big Bang) 
best used as INPUT, rather than 
OUTPUT?  

A: The arrow of time (smooth initial state 
of Big Bang) can NOT be 100% output.  

The very nature of the arrow of time 
requires initial conditions that are not 
completely generic

II.4 Implications
A. Albrecht Phy 262 2016
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What Role
What role inflation?

-Gives package deal:  Universe very large, flat, and with particular 
perturbations (falsifiable!).  

-Answers Boltzmann’s concerns about typical  
regions with arrow of time being much smaller and 
“shorter” then we experience.  (inflation as 
amplifier).  [Also modern cosmological version.]

- Answers “How did our Universe come about?”

II.4 Implications

NB: In the spirit of Linde’s “chaotic inflation”

-“Dominant channel” into Big Bang (Uses attractor behavior and 
exponential volume factors to maximize impact)
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Rare 

Fluctuation

II.4 Implications
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Boltzmann's “cosmology” 
appeared to make very 
strange predictions:
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)(V all space and 
time derivative 
(squared) terms

V



Inflation (**schematic**):

The “rare 
fluctuation” is in 
the inflaton field

A. Albrecht Phy 262 2016
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Inflation 
exponentially 
expands the 
volume

Reheated 
regions give 
big bang

Special package 
of features 
predicted by 
inflation

Inflation (**schematic**):

A. Albrecht Phy 262 2016
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de Sitter Equilibrium (dSE) cosmology

• Take ideas from Holography, Λ to construct a 
finite cosmology
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AA: arXiv:1104.3315
AA: arXiv:0906.1047
AA & Sorbo: hep-th/0405270 
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Evolution of Cosmic Length 
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Evolution of Cosmic Length 
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Hd

Past Horizon: Physical distance from (comoving) observer of a photon that will 
reach the observer at the time of the observation.



Implications of the de Sitter horizon

• Maximum entropy

• Gibbons-Hawking Temperature  
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Gibbons & Hawking 1977
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“De Sitter Space:  The ultimate equilibrium for the universe?
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Banks & Fischler & Dyson et al.

Implications of the de Sitter horizon

• Maximum entropy

• Gibbons-Hawking Temperature

• Only a finite volume ever observed

• If        is truly constant:  Cosmology as fluctuating   
Eqm.

• Maximum entropy                 finite Hilbert space of 
dimension 
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Equilibrium Cosmology
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Equilibrium Cosmology

 An eqm. theory does not require any theory of initial 
conditions.   The probability of appearing in a given state is 
given entirely by stat mech, and is thus “given by the 
dynamics”.  

 If you know the Hamiltonian you know how to assign 
probabilities to different states without any special theory of 
initial conditions. 

Dyson et al 2002
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Move Ergodicity to hidden 
degrees of freedom (we 
*know* state counting 
arguments do note apply to 
the observable universe)
AA in prep



Concept:

Realization:

“de Sitter Space”
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Fluctuating from dSE to inflation:

• The process of an inflaton fluctuating from late time 
de Sittter to an inflating state is dominated by the 
“Farhi-Guth Guven” (FGG) process

• A “seed” is formed from the Gibbons-Hawking 
radiation that can then tunnel via the Guth-Farhi 
instanton. 

• Rate is well approximated by the rate of seed 
formation:

• Seed mass:
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Small seed can produce an entire universe 
Evade “Boltzmann Brain” problem
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Fluctuating from dSE to inflation:

• The process of an inflaton fluctuating from late time 
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“Farhi-Guth Guven” (FGG) process
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See also Freivogel et al 2006, 
Banks 2002 

M 0 not a problem for G-F 
process (A. Ulvestad & AA 2012)
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SN e Implications of finite Hilbert space 

• Recurrences

• Eqm.

• Breakdown of continuum field theory
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This much inflation fills one de Sitter horizon 

(discuss “superluminal 
expansion”)
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This much inflation fills more than one de Sitter 
horizon, generating total entropy
and affecting regions beyond the horizon of the 
observer 

MaxS S 
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• In dSE cosmology this 
region is unphysical.

• Breakdown of effective 
field theory prevents 
inflation from filling 
more than one de Sitter 
horizon
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• In dSE cosmology this 
region is unphysical.

• Breakdown of effective 
field theory prevents 
inflation from filling 
more than one de Sitter 
horizon

“Equivalent” to Banks-Fischler holographic 
constraint on number of e-foldings of inflation 
(D Phillips & AA in prep)
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To get eternal inflation, we made what we 
thought was a simple extrapolation, but 
wound up with a highly problematic theory 
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dSE: The extrapolation that leads to eternal inflation is 
naïve, in that it neglects the breakdown of effective 
field theory. dSE uses holographic arguments to 
estimate this breakdown.  
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Fluctuating from dSE to inflation:

• The process of an inflaton fluctuating from late time 
de Sittter to an inflating state is dominated by the 
“Farhi-Guth Guven” (FGG) process

• A “seed” is formed from the Gibbons-Hawking 
radiation that can then tunnel via the Guth-Farhi 
instanton. 

• Rate is well approximated by the rate of seed 
formation

• Seed mass:
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OUTLINE

1. Big Bang & inflation basics

2. Eternal inflation

3. de Sitter Equilibrium cosmology

4. Cosmic curvature from de Sitter Equilibrium 
cosmology
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dSE Cosmology and cosmic curvature

• The Guth-Farhi process starts inflation with an 
initial curvature  set by the curvature of the 
FGG Bubble

• Inflation dilutes the curvature, but dSE
cosmology has a minimal amount of inflation

B
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dSE Cosmology and cosmic curvature

• The Guth-Farhi process starts inflation with an 
initial curvature  set by the curvature of the 
Guth-Farhi bubble

• Inflation dilutes the curvature, but dSE
cosmology has a minimal amount of inflation
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Image by
Surhud More

Predicted 
from dSE cosmology is:
• Independent of almost 

all details of the 
cosmology

• Just consistent with 
current observations

• Will easily be detected 
by future observations
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Conclusions

• The search for a “big picture” of the Universe that explains 
why the region we observe should take this form has proven 
challenging, but has generated exciting ideas.

• We know we can do science with the Universe

• It appears that there is something right about cosmic 
inflation

• dSE cosmology offers a finite alternative to the extravagant 
(and problematic) infinities of eternal inflation (plus, no initial 
conditions problem) 

• Predictions of observable levels of cosmic curvature from dSE
cosmology will give an important future test 
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