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Chapter 1

1.1 Basic Facts About Our Universe (as seen
by a particle theorist)

The dominant force in the universe at large scales is gravity. The key reason
behind this is that although gravity is feeble compared to the other funda-
mental forces currently believed to exist in Nature (see Table 1.)), it is not get
screened, as there are no negative energy objects. By the equivalence prin-
ciple, qravity couples to total energy which is always positive, for localised
particles, and therefore cumulative: energy= rest mass. The absence of iso-
lated negative energy objects is an empirical fact, which is promoted into
one of the cornerstones of all meaningful frameworks of microscopic physics,
being needed to ensure vacuum stability. Indeed, in quantum mechanics we
must have stable ground states to build predictive deterministic frameworks,
governed by unitarity. Perhaps such frameworks may exist even if we relax
the requirement that spectra be bounded from below. However, until this
date meaningful quantum theories with spectra that are not bounded form
below have not appeared, and taking this as circumstantial evidence in what
follows we will assume that no such exist.

Force | Mediator g M (GeV) | Range (cm)
E&M A, 1/137 0 o0
Weak Wui, Z, | 107° 80-90 10716
Strong I 1 0 <1071
Gravity Py 10738 0 00

Table 1: Fundamental forces in Nature: coupling, mediator mass and range.
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So gravity remains while other forces fade away. This is a blessing and a
curse.

Blessing: gravity is a weak force and so it is mostly clean from nonlinear and
strong coupling complications.

Curse: It is an UNSTABLFE force system. Gravitating systems tend to either
fall apart or collapse — because of the weakness of the force it takes a
long time and so we get a chance to understand some aspects of gravity
— but the universe is an old and big place and this leads to a mystery:
why has it hung around for so long? We will deal with an explanation
later.

1.1.1 Description of gravity

Newton (a long time ago):

mi =—-VV (1.1)
M
V= Gy (1.2)
|Z
Gy = 6.67 x 107"'N m? /kg” (1.3)

Central potential force
e Conservation of energy!

2

e Elliptical orbits in a plane (requires F' o< r~% not just central force)!

Proof of planar motion

The angular momentum is defined by
L=FxpF=mZxi (1.4)
where 7 = Z. Differentiating gives
[=m#xF+mExi=0 (1.5)

where the last term vanishes because for a central force law ' is parallel to

—

x.



1.1. BASIC FACTS ABOUT OUR UNIVERSE (AS SEEN BY A PARTICLE THEORIST)11

This shows L is constant <> orbit confined in a plane.

Finding the equations of motion

The Lagrangian for a system we have

L=m (g + %7“2(?2) —V(r) (1.6)

@ is a cyclic variable, so we have

1
mr?p = ml = constant = ¢ = — (1.7)
r

To solve, introduce the Routhian, which is defined as a Laplace transform
over cyclic variables

Using the specific form of the Newtonian potential we have

722 Mm

The Routhian still obeys the r Euler-Lagrange equation, which leads to the
following equation of motion

. GyM
s (1.11)
Using the result that dz/de = @/¢. For the second derivatives
d’r 1d (7
er_-c (5) (1.12)
de?  @dt \ ¢
ooy »
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where the expression on the RHS comes from differentiating the angular
momentum equation (1.7). Putting this together with (1.11) we have

Fr (e_ B GNM) LA (ﬁ) (1.14)

d—g02 ZANE r2 7"35 dp
> 2 (dr\? GyM
d—(p2_; (@) =T — €2 xr (1.15)

1.1.2 Problems with Newtonian gravity

1. Perihelion of Mercury!
2. Bending of light rays
3. Radar echo delays

4. ...

Mach: inertial mass vs gravitational mass. The question of absolute versus
relative motion.

Newton: absolute motion

Einstein: relative motion

Forces can be “faked” by accelerated frames!

ﬂfL

1) Falling accelerators

a
=

2) Coriolis force
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1.2 Special relativity

The laws of physics are independent of the inertial frame in which they are
formulated:

ds® = n,,, dz* dz” (1.16)
Which is invariant under transformations between inertial frames:

v

' — o = A* ¥, Nuw A N g = Nap (1.17)

This implies that all laws of physics are formulated as local, casual field
theories invariant (covariant) under the Lorentz (Poincaré) group!

1.3 General relativity

‘ gravity = accelerated frame ‘

Thus gravity “arises” from an acceleration of an observer relative to some
frame where locally gravitational force is not felt!

ds* =1, dz* dz” (1.18)
¢ =¢H(=") (1.19)
x#: curved coordinate system!
Locally
acH
d¢t = ——da“ 1.20
¢ = (1.20)
acH /G4
ds® = ——dz® a 1.21
codsT =1, (8a:adx ) (8xﬁdx ) (1.21)
act oy 3
= — @ 1.22
(77/“/ c%ca axﬂ) dz® dx ( )
= Gup Az da” (1.23)

Now we are claiming that physical laws are INVARIANT under ANY changes
of co-ordinate frame!
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In general, we have

=z (z?) (1.24)

Gy A7 7" = gu,,%% dz® da” (1.25)
= gop do® da” (1.26)

S Gap = g,wg%% (1.27)
(1.28)

Gravitational effects are “buried” in the local deformation of the metric away
from flat space! Diffeomorphism group GL(4,R).

1.3.1 Conventions

Usually in particle physics we use

mw=( 2 0 ) =ds?=d? a2 (1.29)
0 13><3

In GR & cosmology the prevalent convention is the opposite:

I = Z Ax(ex)ulen)y (1.30)

Ao =—[fols Ak = [fil (1.31)

ie. ds® = —fydt* + f,da? + f,dy* + f.dz* + off-diagonal terms

(1.32)

and notedet g < 0 (1.33)

Note: We are assuming that the off-diagonal term is small. It is possible that
if the OD terms are sizeable that they are all positive. We only know that
three of the eigenvalues are positive and one is negative.

1.3.2 Particle motion

“Fermat’s principle” — minimum path

Ay da# da”
Arc length = / ds = / G ————— dA (1.34)
A AN dA
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dot tangent vector to
e trai da /A
the trajectory. '/

A: affine parameter.

Variation yields, for massive particles, when we can always choose A\ = s
(proper time along the path)

2z u dz dz?

V5 = 1.
w2 o 70 (1.35)
where I' are the Christoffel symbols:
1
Fﬁ)\ = _gua (gyo',)\ + row — gy)\,o') (136)

2

Locally there exists a coordinate system such that
2o
d¢?

Principle of equivalence: gravity = acceleration.

T (0) =0 = — 0 (1.37)

‘ “All massive bodies fall equally” ‘

Empirical law which is well supported by the experimental data. Precision
of tests is of the order of 1074

A note on the equivalence principle

It is probably worth noting that there are three different versions of the
equivalence principles.

1. Weak equivalence principle (WEP)
If an uncharged test body is placed at a specific position and let released
with a specific velocity, its trajectory will be independent of the internal
structure and composition.

2. FEinstein equivalence principle (EEP)
The WEP is valid; the outcome of any local nongravitational test is
independent of the velocity of the freely falling apparatus; the outcome
of any nongravitational test experiment is independent of where and
when in the universe it is performed.
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3. Strong equivalence principle (SEP)
Hard to state precisely, but roughly states that there is no prior geom-
etry and that gravity “gravitates” the same way as normal matter.

The interested reader is referred to the Clifford Will’s book “Theory and
experiment in gravitational physics”.

The EEF is impossible to test directly, as it requires knowing about the
everywhere at all times throughout the universe. Usually, we test the WEP
directly and assume the other things that the EEF asserts. The best current
test of the WEP is by Keiser and Faller, and the method used was floating on
water. The WEP (difference in gravitational attraction for different bodies),
the acceleration differs by less than one part in 10%.



Chapter 2

2.1 A brief review of tensors

Tensor: a set of fields {7#1#»,  } which transform linearly under a diffeo-
morphism.

at — 7 =z (x") (2.1)
a_ﬂ
dat — dz* = aiv da” (2.2)
ozt  oxH Ox¥
ot = = 2.3
AT orr T Oxv O (2.3)
Therefore % is the inverse matrix of g%.
Then:
_ orh Ok Jx OxPm
B fin B fin — ai...om

™ Vietm ™ Vl..Vm Orat OHxon OV @]—;umT ' B1...Bm

(2.4)

is a tensor that is n times contravariant & m-times covariant.

Damien’s note: There is some tension in the GR & mathematics literature
regarding covariant and contravariant. The tensors themselves are invariant
under these basis changes, but the components are not. In GR tensors are
labelled by how the components transform, while in mathematics they are
classified by how basis vectors transform. To keep the actual tensor invariant
these two are always opposite. We follow the GR convention here.

17
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Examples:
¢  scalar ¢ =0
V,  vector V.= ‘gij ,
g  COvaraint metric: Juv = gag i giy
v : S AUV %x“ ox¥
g contravaraint metric: g"” = 92 DB
2.1.1 Action of derivatives
Scalars:
d¢ = 0,9 da" = @d) dz* (2.5)
- 8

which transforms as a rank 1 covariant tensor! Therefore we define the
covariant derivative of a scalar as

Vo =0,0 (2.7)

Note that the RHS of (2.7) is just notation, and the LHS is what we mean
by it. We will use V,T##n to denote the covariant derivative of any
tensor..

Vectors:

_ ox®
Vu - aff‘“ « (28)
Hit with a derivative and see what happens:
v, = (225,) 22y, (By chain rule) (2.9)
W=\ 22%) 5z Ve y chain rule .
0z® 0z~ ox® (0 Oz~
= 2.1
g (05Va) * oV (axﬁ ((99?“) e 210)

tensor like non-tensor
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NOT COVARAINT! We can rewrite the offending term in a simpler way by
undoing the chain rule for this term only:

ox® (0 Ox“ 0% x®
355 (i) Vo= 5 2
bt 87° 8P O 222 9
S x? 0x” 0x” o x% o
P = Oz ozv oz P Oz OTH O (2.12)

So we can use this to cancel the non-tensor piece! The object
vV, =0V, -1}V, (2.13)

is a derivative-like object that transforms as a rank 2 covariant tensor.

In general:

What exactly do we require of the derivative V7 By requiring the following
five things, we make the definition essentially unique:

1. The derivative must be linear:

vlt (OCAHI---P«nVlme _}_ﬁBHI---Hnylmym) - OéVNAulmpmul...ym +ﬁquM1mMnV1...Vm
where o and 3 are constants.
2. The Leibnitz rule:
vu(Aﬂl---Nnyl'nymBpl.uppo_lmo_e) — (VMAM---MnVlmym) Bm---ppalnw

+ Aul.“unyl'”ym <VMBP1”'ppo'1...U[>

3. Taking the covariant derivative commutes with contraction
4. Torsion free scalar fields: V,V,¢ =V, V0

5. That the derivative of a scalar field is the partial derivative: V,¢ = 0,¢.

Once we require these, one can prove by induction that the covariant deriva-
tive of a general scalar field is

MO 01.-0—1P041---Om

m
V1...Un _ V1...Un _ P V1...Un
VNT 01...0m aNT 01...0m § :F T
k=1

01...0m

+ ZFZIZTV1...V1€_1PW+1---V" (214)
k=1

The induction proof is given in chapter 3 of Wald’s book [2].
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Covariant derivative of the metric
vugu)\ =0

because of metric compatibility.

2.1.2 Covariant divergence

V= 9V TV (2.15)
But:
" L o
F;Lp = ig (gud,p +.onﬁ—_gppf) (216)
1 11 1
— _glwg/w,p — __apg = —ap\/,a (217)

2 2g

V9

where the cancellation in (2.16) occurred because these terms were simul-
tanously symmetric and antisymmetric in x4 and o.

Therefore, we have

1
V. V=0,V 4 ﬁ(ap\/g)w (2.18)

= 75 VIV + OV = 0, (Vv (219)

V9
2.2 Integrability conditions

If there exist coordinates suct that I'!', = 0 everywhere, then the spacetime
is globally flat — NO GRAVITATIONAL FiELD!

(Technical note: the spacetime maybe topologically different from Minkowski,
but in any local region away from a conical singularity is will be indistin-
guishable from Minkowski space.)

So gravity is hidden in the I'?;:

gravity = deviation from flat space = curvature
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Sufficent and necessary condition for the existence of a coordinate system
that makes the ', =0 is
R, =0 (2.20)

where the Riemann curvature tensor is defined by

RNV)\O' = aAF5(7 - 801“5)\ + F/}\Lprﬁa - ngrllj)\ (221)
Gravitational field < R" , #0
Gravity < Riemannian geometry
< Invariance under arbitrary nonlinear
coordiante transformations.

Gauge theory — gauged Lorentz symmetry!
Complications: physical transformation in BOTH g, and I'",.

Geodesic equation:
d?zr , da” dz?
+ >\ -
ds? “ds ds
shows I’ as the “gravitational force”, and g,, as the “gravitational poten-
tial”.

—0 (2.22)

R" measure of gravitational field — if it is
zero, spacetime is (locally) Minkowski

= no (local) gravity!

VAo

Thus gravitaional dynamics is encoded somehow in R" , .

Indeed: R" ),  contains two derivatives of g,,, and so if g, is to play
the role of the gravitational potential, an expression linear in R" ,  would
have the right structure to play the role of a local, causal — 2nd order in
derivatives — field equation.

Hint: non-relativistic graviational field is controlled by the gravitational

potential of a source M:
M
¢ =—Gyn— (2.23)

7]
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which obeys the Poisson equation

V2 = —4nGn M5 (1) (2.24)
V3¢ = —4nGrp(T) (2.25)

where p(Z) is the matter density.

Now in special relativity, p is component of a rank 2 stress-energy tensor
T,,, and so indeed ¢ should also transform as a 00-component of a rank
2-tensor= g,,! In fact, in the weak field limit static configurations yield the
Newtonian approximation

goo = —1 + 20 (2.26)

such that the Poisson equation naturally comes about if the relativistic equa-
tion is
GIW = 87TGNrFlW (227)

where
o G =R, — %gWR, Einstein tensor
e R, =R"  _, Ricci tensor
e T, stress-energy tensor.
Riemann tensor obeys the Bianchi identities
VR, =0 (2.28)
where the round brackets denote symmetrisation. We can deduce
Vv,G", = 0. (2.29)
Then from Einstein’s equations
v, T", = 0. (2.30)
This is REDUNDANT since

v,1T", = Z J, x (field equation) (2.31)

matter
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Example:

Scalar field ¢:
1 2
T;w = vu¢ Vu¢ - iguu(v¢)2 - guum?¢2 (2'32)
VT = V'¢(0p — m?0) (2.33)

which vanishes on shell, as it is proportional to the Klien-Gordon equation.

Notice: since g,,, = diag(—1, T) the field theory convention, defined by
O¢ + m?¢ =0 (2.34)

changes to, because
0= ¢"0,0, — —¢"'V,V, (2.35)

after changing metric conventions, so we have
O¢ —m?¢ =0 (2.36)

instead.

The Bianchi identities are a local statement of general covariance: they
ensure that there are no additional constraints on the equations of motion.

2.3 Stress-Energy tensor and the action prin-
ciple

Einstein’s equations can be derived from the Einstein-Hilbert action by the
usual variational procedure with fixed boundaries:

R
S = /d4x\/§ (m - Ematter) (2.37)

(See physics/0504179 for an interesting account of the history of the Einstein-
Hilbert action, and what the respective roles of Einstein and Hilbert were).
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The stress-energy tensor T" is the functional derivative of the matter
action with respect to g,,:

2 08
TH — % g;atter (238)
[1%

and it is symmetric and, as we saw above conserved.

Now:

9w
0\/g = gg‘ Gy (2.39)

wo R 11
55 = [ at I g -+ ST™5g,, 2.40
/ ‘T*@( 2 167Gn 9" " TonGy 2 g“) (240)

where we have

SR = 6(g" Ru) = (66") R + 9" R, (2.41)
and we convert the variations d¢g"” into ones in dg,, as follows:
59" = —g™" 9™ 6 gap (2.42)
This allows us to write
(09" )R, v = —R"69,, (2.43)

Finding the variation R, is tedious, but some work has to be done some-
where. Using R, = R, you should prove to yourself

UV
SR = V0T, — V01, (2.44)
This implies
SR = —R"bg., + VA(g"6T),) — V,(g"6T),) (2.45)
= —R"§g,, + V. J" (2.46)
Thus
g R R;U/ 1
(5 = d4 g - 6 v _le(; ng L K
o / xﬂ{( 2 167Gy 167TGN) G 51700 +v"]}
woR R 1 1
— d4 g_ _ 6 5 _Tm/5 w - n
/ w9 (2 167Gy 167TGN) Gur T 51709, +\/§a“\/§‘]

————

boundary term
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We assume that we can drop the boundary term (not always valid!), but in
the cases it is we obtain the Einstein field equations as the stationary points

in the action:
GH = 8nrGNTH (2.47)
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Chapter 3

Lecture 3

3.1 Cosmological solutions

Universe is extremely homogenous and isotropic at very large scales. WHY?
Density deviations are of the order 1075.

To leading order we can approximate the geometry by the metric which
has homogenous and isotropic spatial sections.

Homogenity & isotropy — invariance under spatial traslations and rota-
tions
6 generators

These geometries have maximally symmetric subspaces (see Weinberg [1]).

Depending on the spatial curvature, there are 3 allowed transitive geome-
tries, parameterised by k:

Flat Spherical Hyperbolic
k=0 1 -1

The metric can be put into the form

dr?
1 —kr?

ds? = —dt* + a(t)? ( 1 r2d§2§) (3.1)

27
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Symmetries leave only one function undetermined: a(t), the cosmological
scale factor. This is determined by Einstein’s equations. The spatial symme-
tries then also restrict the form of the stress-energy tensor.! It is characterised
by 4 eigenvalues; indeed at any point p we can diagonalise 7% such that

TS = —p; T% = pg; others = 0 (3.2)
le.
—p 0 #
o P1 0 0
T", 010 pp 0 (3.3)
0 0 P3

The spatial symmetries then ensure that this diagonalisation remains true
everywhere, since the symmetry group acts transitively, mapping every point
to every other point. In particular p;, p» and ps cannot be functions of
x (homogeneity). Rotational invariance requires no special directions, so

P1 = P2 = P3: p
(70 54

We will often deal with simple fluids, obeying a simple linear (barotropic)
equation of state p = wp

p =0 non-relativistic gas
p=p/3  relativistic gas
p=—p/3 cosmic strings

p=—p cosmological constant

If we define the comoving velocity vector u,, such that a particle at a fixed
T is at rest relative to it, then in the FRW coordinates

u, = (1,0) (3.5)

so that
T/u/ - (P + p)uuuu + Y2 my, (36)

Einstein tensor: by symmetries G% and G*,!

IDamien: The logic here seems backwards to me. The observations tell us to a good
degree of accuracy that the stress-energy has the form (3.4), from which we infer the FRW
metric.



3.1. COSMOLOGICAL SOLUTIONS

Note:
1 ETZTQ +r2dQ; = 1377;;2 —dr? 4+ dr? + r2dQ3
2
=dz* + %er
= di® + : _W(f-dfﬁ
= (5k£ + k 1 ?Z%) da® da’
Gke = Ope + klx_éi%
g = 6% — kak !
The Christoffel symbols are
I =10, =Th =0
Ity = %gnpgk:p,o = H", = g
The = _%googkzﬁ,o = —%QCM'I (6ké + kl ?Z;Q) = —Hgw

1
FZE = igmn(gknl + 9enk — gké,n) = kl'mgkg

3.1.1 Energy conservation:

We know that
vV, ™" =0

This constrains p and p in the following way
A
v.1", =0=0,1%, + FZ/\T , — o1,
Let us look at the spatial parts:

vuTHk- = auTHk + FZATAk - FZ,{T’LP
:Q/p+pr5k—prgk =0

29

(3.13)
(3.14)

(3.15)

(3.16)
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where the first term vanishes by homogeneity. The “conservation of energy”

s non-trivial;

VI =0 = 89,1" + T4, T — T, 1",
= Too + FZOTOO - FioTkk:
=—p—3H(p+p)

Therefore:

p+3H(p+p)=0

i.e. adiabatic evolution!

3.1.2 Ricci tensor

In general we have

= o\

R,, = R* N — O+ I, =T T

JN% ApT pv vpT pA

For FRW:

ROO = R)\O)\O = Rkoko - QI(FJ(;_ aorlgk +%_ Flgprgk:
= —3H — H*}6, = —3(H + H?)

So R% = 3(H + H?).

Similarily:

. k
RF, = (H +3H? + 2?) 5%,
3.1.3 Ricci scalar

: : k
R:ROO+Rkk:3(H+H2)+3(H+3H2+2—2)
a

=6H + 12H2+6%
a

(3.21)
(3.22)
(3.23)

(3.24)

(3.28)

(3.29)

(3.30)
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3.1.4 Einstein tensor

1
G", = R, — 55", R
k
0 _ 2
Gy = —3H* — 3
: k
k 2
Gy = 20 —3H° — —

3.1.5 Einstein’s equations in FRW

Define the Planck mass: 87Gy = ]\41;2
Indeed, note that taking ¢ = h = 1, since

mM V][Z] 1
V:_GNTH[GN]: = —
|7 [m]? [m]
Therefore
k p
2 - =
3H —1—3&2 Mp2
2H +3H* + — = ———
P =

Total system:

p+3H(p+p)=0

k P

2
R AV
p
p

. k
2
2H 4+ 3H +?:_ﬁg

31

(3.31)
(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
(3.38)

(3.39)
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Note: take first derivative of (3.38) and eliminate p using (3.37):
(p+p)

6H H — 6%H = 30 VE (3.40)

L 2H — 2% - _Mig - Mig (3.41)

- —M% —3H? - 3% (3.42)

- 2h+ 3H? + % - —M% (3.43)

which is (3.39)!

So (3.37), (3.38), (3.39) are not independent! (3.38) is a Ist integral of
(3.39)! = can drop (3.39).

Why? Energy conservation! =- Bainchi identites — imply the vanishing
of an integration constant.

Mechanical analogy: consider a particle in true “funny” dimensions (with
m=1)

‘%‘.2 y2
L=—-=2-V 3.44
L —v() (3.44)
V conservative — H = 0, where
‘%'.2 y'Q

Ist integral: %2 - y—; +V(z) = E.

If there exists a reparameterisation invariance t — 7'(¢) which does not
change physics, we must have ¥ = 0 — evolution is governed by Ht = Et,
and reparameterisation invariance requires ¢ independence = E = 0.

This is precisely what happens in gravity, since t-invariance is a part of the
general coordinate invariance! Then the Hamiltonian system above is pre-
cisely the limit of Einstein theory in isotropic and homogenous cosmologies:
mini-superspace approximation!
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So drop equation (3.39).

33
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Chapter 4

Lecture 4

4.1 Solutions of cosmologies

p+3H(p+p) =0

k P
2 _
p=wp
4.1.1 k=0
Then
2o P

— H >0 or <0,
N~ SN~——

expanding collaping

Metric is spatially flat

ds? = —dt* 4 a(t)*dz* = Topology:R x R* = R*

35

(4.4)

(4.5)
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Expansion value depends on the equation of state:

p+3(1+w)Hp=0

p
P Po
3H?’ =" =" ___
M2~ M2 g3+
. 3w+1:2 £o
C.a a4 = ——
?;]\/[p2
So:
3w+1

Case 1) 3w+1>0

a(t) = (£Ct)5wn

In this case a < 0, so the universe is decelerating.

a
L= 301+w)-=p=-2
p a

CHAPTER 4. LECTURE 4

-+

Case 2) 3w+1=0

a==+xCt
alt) = (£Ct)5wn

In this case @ = 0, so the universe is coasting.

-+
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Case 3) —2<3w+1<0

2
3 3<2 —>1 4.15
w3 <2 gom > (4.15)
alt) = (£Ct)5w (4.16)

In this case a > 0, so the universe is accelerating

/
[
|
|
\
—+

Case 4): w=—1

4.1.2 k= —1, spatially open

2 _ P 3
3H” = e + po) (4.19)
p
Similar to flat case: H is positive or negative so the universe either collapses
or expands; the topology is R x Hj.
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Depending on the equation of state, the universe can have asymptotic
evolution towards curvature dominated era: if w > —1/3, p ~ a™®, a > 2.
So as a > 1, p becomes subdominant to 1/a*:

a

t
(Green is curvature and red is matter density).
4.1.3 k = 1: spatially closed universe
SH? = p— > 4.20)
= — ( .

More interesting: now H can start with one sign, go through zero and change
sign on the other side of the extremum (of a). So the universe either starts
out expanding, reaches the maximum size and recollapses, or it starts out
with infinite size, collapses until it reaches the minimum size and the bounces
back out.
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What are the asymptotic regions? Consider
. 9 k
R=6H + 12H* + 6~ (4.21)
a

Eliminate H and H? by equations of motion:

p—3p
R="" (4.92)
p
By p = wp and p = poa 2% we see
1-3
R=-—""_1 (4.23)

MZ q1+w)

1) w>-1 : Rblowsupasa—0
2) w>-1 : R constant

w>—-1—=p+p=_1+w)p>0
Null energy condition: region of vanishing a is curvature singularity — the
curvature R ~ a~ diverges there; physical picture.!

Energy gets squeezed to tiny regions of space, back reacting violently on the
geometry.

DESCRIPTION BASED ON EINSTIEN’S GRAVITY COMPLETELY
BREAKS DOWN!

I'Damien: It is not clear from this statement how the null energy condition is being
invoked. NK is presumably referring to the cosmological singularity theorems. In this
context I think the strong energy condition is being invoked.
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We cannot extend through the singular region using the standard theory
of gravity since the corrections are NOT under control:

4 MI? 2 R3
p
where R*, R*/M?, ... are LARGE!

The singularity is ALWAYS present in the k = 0, £ = —1 cases because of
the monotonicity of a(t) (H > 0 or H < 0).

In the k£ = 1 case, the singularity may be unreachable because of the
bounce: universe starts out infinite, with a — oo and R — 0, collapses until
it hits H = 0 at some a,yj,,, and expands back out to infinity.

However, this kind of singularity “removal” is unstable! A small initial
perturbation with energy density p ~ a™™ can get “blueshifted” (grows as a
decreases) and prevent the universe from collapsing.

‘ More work needed ‘

4.1.4 Special k£ =1 case

Suppose p and 3/a® exactly cancel each other in the H2 and H equations, so
that H = 0:

2

d
ds* = —dt* + af (1 r

5+ erﬂg) (4.25)
ie. ds?=—dt* + adQ3 (4.26)

Einstein static universe: a spatially spherical geometry of constant radius.
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Topology: R x S3:="“cylinder”

~

/' equator

—— null circle
A (light rays)

Note: light rays emitted from the North pole first diverge, until they reach
the equator — after that they start to reconverge and get focussed! “Lensing”
purely by topology.

Equator = apparent horizon
which is the surface of vanishing geodesic expansion (vanishing geodesic “di-
vergence” ).

In practise, consider the FRW geometry:

d32 = —dt2 + CL2 (m + T2dQ%) (427)
Change coordinates to R = ar:
1
dr = a(dR — HRdt) (4.28)
1— (5 +H?) R dR? HRARdt

2 _ a 2 2 102
ds” = — Y dt+1—%R2_ e + R*dQ;  (4.29)
R = const: n,dz"* =dR = n, = (0,1,0,0) (4.30)

where n,, is the spatial normal to the surface R=const.

1- (5 +H?) R
(1— 4 R2)?

In|* = g"d,RO,R = g™ = (4.31)
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Area of the two-sphere measures geodesic devia-
tion: as long as the area increases along the null
geodesics, a neighbourhood geodesics “moves”
further apart, and vice versa. If area decreases,
geodesics move closer together!

Apparent horizon = extremal area along a geodesic family!

A =21R? (4.32)
A: affine parameter: dA/dA = 0. i.e.
dR
— =0 4.33

But: if A does not change along the direction of a geodesic, that may only
happen if geodesics move

1. LOCALLY along it! This means that A contains null geodesics — that
its normal must also be null!

2. LOCALLY about it! So A does not contain null geodesics, but dn is

null —coordinates are such that the normal is also null!
1

S RAp = ———
An=
a2

or, by Friedmann equation,
3
Ry = \ﬁMp (4.35)
P

For the Einstein static universe, H =0, k = 1:

(4.34)

Rag=a0o—rpag =1 (4.36)
On the 3-sphere, from
dr?
—— =dx’ 4.37
= dy (437)
= r=siny, T’AH:1<:>XAH:g (4.38)

Therefore apparent horizon = equator!
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Apparent horizon controls the evolution of gravitational instabilities!

Note: Jeans radius is defined as the linear distance defining the volume of
space which for a fixed environmental density contains enough mass to be
gravitationally bound:

M M?
R ~ Rpy Mz~ ML]%R?’ — R* ~ TP (4.39)
M
“R~—=2~Rpy (4.40)

VP
See Carr & Hawking, [5].
Bottom line: the apparent horizon divides the spacetime into two regions:

in one, the “interior”, both past and future oriented geodesics are divergent.
In the other, “the exterior”, at least one of the families is convergent.

TRAPPED REGION future-oriented geodesics are conver-
gent
ANTITRAPPED REGION past-oriented geodesics are convergent
Examples:
TRAPPED *black hole horizon

*big crunch
ANTITRAPPED *spatial future in eternal universe.
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Chapter 5

Lecture 5

5.1 Causal structure

(References for this chapter are Hawking and Ellis [4] and Helleman, NK and
Susskind [6]).

The simplest way to understand the geometric properties at a world with a
metric g,,,, and in particular the causal relations between events, is to analyse
it with the help of light rays, i.e. null geodesics.

In the instance the geometry possesses symmetries there is a very powerful
technique one can use —conformal maps.

The key: map is full, infinite spacetime on a compact space, so that ev-
erything is in “front of one’s eyes”.

5.1.1 Carter-Penrose diagrams

Due to B. Carter, popularised by R. Penrose.
Idea: map “infinity” onto a finite boundary by a conformal rescaling.

In Euclidean geometry, this is the inverse of a stereographic projection:

45
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7AN

A

Note that the null geodesics remains UNAFFECTED by conformal transfor-
mations. Indeed:

d?gr dx* dz”
= Fu e == 1
ds? A ds ds U (5.1)
dat dz¥
I s a0 (52)
Now define
g;w - Q2g/w (53)
The new Chistoffel symbols are
[h =T + 6" 0, InQ+ 6,0, InQ — §,,5"9,InQ (5.4)
and redefine s — 5 = f(s) such that ds = Q*ds. Then
da* 1 dz#
A5 Q2 ds (5:5)
Pz 1d (1 dat
A (5.6)
ds? Q2ds \ Q2 ds
1 (d*z#  _dInQ da*
o4 ( ds? ds ds ) (5.7)
So:
2 v 2 v
d’z" +1—W/\dx_ d_x_* 1 (e de FuAdx da?
ds? ' ds ds ds? /d/ ds " ds ds

N 2dm Qde”  de¥da? [ da”da?
" Ads ds INTs ds \I"Vds ds

If we are looking at a null path in the metric g,, (and hence in g, as well,
as they are proportional) the last term vanishes. This leaves us with

Azt dz” da* 1 (d%u - ded_xA)

(5.8)

4 1
a2 TN a5 o\ TN s ds
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i.e. If this is a null geodesic in g,,, then the bracket on the RHS is zero.
This implies that the geodesic equation is satisfied in g, also! So conformal
transformations do not change null geodesics!

5.1.2 Minkowski space

ds? = —dt? + di? = —dt* + dr? + r?dQ; (5.9)
in spherical polar coordinates. Define null coordinates
r—t r+t
7 7 (5.10)
dr? — dt?
= dudv = % (5.11)
SO N
ds? = 2dudv + r?(u,v)dQ3, r= ery 5.12
(u, v)d€2; 7 (5.12)
Define two more variables by
u = tan¢, v =tan( (5.13)

To cover the original ranges of ¢t and r we require —7/2 < (,£ < /2. The
differentials change by

dg d¢
du = —— = — 5.14
4T o £’ VT os? ¢ (5.14)
Therefore the line element becomes
d¢d 1
ds®* = ¢ds + = (tan( + tan &) dQ2 (5.15)

cos2C cos?E | 2
= m (QdC dé + %(sin(cosﬁ + sin € cos C)Qng) (5.16)
S - (QdC d¢ + % sin(¢ + ¢) dﬂg) (5.17)

cos?  cos? &

Now use yet another coordinate transformation:

_§+¢ _&—¢
R_—\/§ , T_—\/i (5.18)
_ 2 2
P e e e (5.19)

V2
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In terms of the new coordinates

1
ds? = ! (—dT2 + dR* + 3 sinQ(\/iR)dﬂg) (5.20)

The original coordinates r, ¢ in terms of R and T are given by

S anR_T anR+T

T—\/i(t 5t \/§> (5.21)
1 R-T R+T

t:ﬁ(tan 7 — tan 7 ) (5.22)

In order to cover the whole r—¢ plane we only need a finite region of the R-T'

plane.
t T

Nothing out here

Expanding out one of the angular directions (but still suppressing one) this
leads to the following picture which is conformal to Minkowski spacetime
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Timelike
future

Future null
infinity

typical light ray

Spacelike
infinity

Past null
infinity

Timelike
past

5.1.3 Horizon

Suppose O launches a missile radi-
ally outward at the speed of light —
the fastest affordable speed at which
communication is possible in special &
general relativity.

If the signal has been emitted at time ty, by time ¢ it can only reach ob-

servers out to distance L = ¢t in Minkowski space. Similarly, if observations

begun at time tj, only events up to distances L = ct can by seen at time t.
.. limits to causal communication
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Take a positivist point of view: only things which can be seen have a
physical meaning — what can never be seen is essentially irrelevant!!!

How can we determine what can and what cannot be seen (i.e. be rele-
vant)?

In relativistic cosmologies

2

1 — kr?

ds? = —dt* + a(t)? ( + 7“2ng) (5.23)

universe:
1. Expands

2. start out at a singularity

1. Because it expands, it can happen that objects far away begin to recede
“faster than the speed of light”. i.e. regions of the universe are so
far away that because of rapid expansion they never get a chance to
communicate with each other

2. Because there is an initial singularity, some objects were not initially
in causal contact, and as time goes on more and more end up commu-
nicating with each other.

Particle horizon and event horizon are measures of past and future limits
of causal communication.

Null geodesics:

dt  a(t) dr

e 5.24
dN V1 —kr2 dA (5:24)
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How far into the past can O see?
If a signal were emitted at ¢y by the
lo  time it reaches 0 at ¢, r = 0 it has
travelled the comoving distance

T k=20

/t dt/ /T dr Sl k .
— Y = —F = Sin r = —
to a/(t,) 0 V 1 - kTQ 1

sim—r k=41

This is at a proper distance

from O at time ¢.

o1

(5.25)

(5.26)

So since the universe starts out at a singularity at t = ¢y, by time ¢ only a

finite portion of the universe will have been seen:

t

Particle horizon: how far the observer’s past reaches

t

Ly = a(t) /0 aﬁ(l:)

It grows as t grows!

(5.27)
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Suppose now that the observer asks a different question: what is the events
that can ever be accessed? This defines the EVENT HORIZON. The event

horizon at ty is the intersection of the event horizon and the hypersurface
t=to.

Remains invisible

to causal communication
N\

END OF TIME: t — oo

o dt/
/to Tt’) =y (maybe divergent) (5.28)
du = a(to)x (5.29)

Future event horizon

If dy is a convergent function, then
FUTURE EVENT HORIZON = sup dg(t)

Never to
be seen

\

Past event horizon

Maximal ‘sphere of influence”
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7

never to be
influenced

t dt/
Ly = a(t)/ = size of particle horizon
0

5.1.4 Causal patch

t

Never to be seen

Past event
horizon

Causal
patch

Future event
horizon

7
/. Never to be
- influcenced

Causal patch: the set of all actions whose effects can be observed!

Example: Minkowski space

23

(5.30)
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J-I—

No event horizons since infinities are null (and in the right place). No geodesic
starting at the centre crosses JVor J™in finite range of affine parameter —
Minkowski patch is causal and geodesically complete!

5.1.5 Summary of horizons

This section is a summary of mine, and Namanja deserves no blame for

mistakes here!

Horizon

Need to know

Use

(Future) event horizon

(Past) event horizon
Particle horizon at tg

Apparent horizon

causally connected
region(CCR) for all
times

CCR for all times
CCR up to tg

local region only!

Tells us about the region that
we can possibly reach.

Tells us about the region that
we can ever influence.

Tells us the region we could
have seen at .

Tells us about the growth of
perturbations

The apparent horizon’s role has not been emphasised so far, but it will be

expounded upon in §11.2.
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Lecture 6

6.1 Causal structure of FRW universes

45 — —df? + ae? (97 2402
s° = —dt* + a(t) 1—/€r2+r 5
k P
3H? +3— = -
+ a? M}?
a 3(14w)
pt) = (=), w=t
a p

Example with £ =0

In this case

t = 0 singularity: R ~ 1/t%
t

Singular surface

What is the causal structure?

95
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Technique: Note that in the Minkowski space case, we found the causal
structure by mapping the Minkowksi space into a section of the static Einstein
universe:

T
M// R x S?
inkowski
N S
We repeat the same trick for all FRW cosmologies!
Start with £ = 0 cases first:
ds* = —dt* + a*di? (6.5)

Notice that they are all conformally flat: change the variable to conformal
time n:

dt = a(t)dn (6.6)
dt
0= [ (67)
such that
ds* = a*(—dn? + d7?) (6.8)

1. So the spatially flat FRW cases are conformal to Minkowski.

2. We know how to map Minkowski on a patch of the Einstein static
universe R x S3.

3. Combine the two maps!

Map(FRW — R x §*) = Map(M; — R x S*) o Map(FRW — M)
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Guess:
2
t 3(14w)
a = ag (%) (6.9)
. 1
R=6H + 12H* ~ 5 (6.10)

all FRW universes are singular at ¢ = 0.

So since the Minkowski time runs over (—oo, 00) and FRW only over (0, 0o),
FRW should map on half My; one “expects” something like

This is the correct equation of state for w > —1/3 — see Hawking and Ellis
[4]

w < —1/3 is somewhat surprising, because in this case there are event
horizons! Indeed, consider

dy = alt) /too % (6.11)

with
£\ TFw
a(t) = ao [ - (6.12)
to
_2 [ dt
= dp = t30+w) / P (6.13)
t  t30+w)
2 143w |90
3&;5){3(1%)3; (Fw) . w > —%
=4 tnz|? w = _% (6.14)
3(14w) 1 3my —% = L
|1+3w|t3(1+ ) 3(14w) . —l<w< -3
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e dy diverges when w > —1/3.

e dy CONVERGES when w < —1/3!

w < —1/3 universes have an EVENT HORIZON!

Not accessible! Extract!

Versus V
EH!

M,
Detailed map
Let
£\ B
a = agp (—) (6.15)
Lo
dt 3(14w) 51y _1
77:/ L T w# 3 (6.16)
30 +w) Int w=—z
So:
ds? = a*(—dn* + di?) = a®(—dn? + dr* + r?dQ3) (6.17)

The next step: map the Minkowski space onto R x S3:

i (127 - (257)] o1

X+T X—T7
{tan (T) + tan ( 5 )] (6.19)
Then, when w # —1/3

Lt g (B w) Y 15 [eos (457) cos (547)] T
|1+ 3w)| 1

f]’]:

T =

N — N

(—d7?+dx?+sin® x dQ3)

2
4 sinT+3uT (|7])
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where /¢ is a length scale given by

3(14w)

N ﬁ [14+3w]|
0= |agM; (6.20)

The following relationship will be useful in determining the limits of y and
143w ()30
+w —_
A+3w (t e (XETY (X7 (6.21)
6(14+w) \ ¢ 2 2

Note that when w > —1/3, 14+ 3w > 1 and therefore

t ~ tan (X?M) — tan (%) (6.22)

Thus the singularity at ¢ = 0 maps onto the line

tan (XTM) — tan (%) (6.23)

or therefore a great semicircle 7 = 0!
= Singularity is spacelike

T:

w>—1/3

Null future infinity n + r — oo maps onto
tanXTH—M)oéx—i-T:W (6.24)

which is the null semicircle 7 = 7 — x. This completes the boundary map:
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No event horizon; H = 3(1iw)%. So
3(1
R, 21w (6.25)
2
w=1/3
t=const| . r=const
""""" R w=1
w< —1/3
When w < —1/3, 3w+ 1 < 1 and so
" ! (6.26)
tan (357) — tan (337) '
so this time ¢ — oo maps onto the great semicircle 7 = 0!
The singularity ¢ = 0 maps onto
tan (X ;— T) — 00 (6.27)
or tan (X ; T) — 00 (6.28)

i.e. the great 1/4 circles 7 = +y — .
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Lecture 7

7.1 de Sitter space
Solution of Einstein’s equations with cosmological constant

G = 81GNT),, = —81GNAgw (7.1)
found by de Sitter in 1917. Looks like many things at the same time —

deceiving!

7.1.1 Construction

Consider 5D Minkowski space

2
ds* = —dt* + d7 + d% (7.2)

and embed into it a spacetime hyperbolid of constant curvature:
k(-1 =1

Eliminate 2z by using the constraint

zdz = k(tdt — Zd7)

61
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So
) _ K 2
dz” = ;(tdt — Zd7) (7.4)
k? 5
= ————(tdt — zdx 7.5
1_k(52_t2)( 7d7) (7.5)

So note that tdt — Zda = —n,, dz* dz¥, so that

2

2 v =12
= T]Hydl'u dz” + W’fmo—nu)\lﬁl)\ dz* dz” (77)
k o v
— (nuy —I'— Wﬁpﬂ'nu}\x ./I/)\) dl‘u d./I/‘ (78)
Thus "
G = Ny + W”uan/ﬂlﬂx}\ (7.9)

The metric has 10 isometries; let us find them. First note that from

Oz® OxP

qa v — YaB =~ == 710
I =9 5 ozr ozv ( )
In the case of infinitesimal transformations
ot =at + (7.11)
— =t =& (7.12)
axa (e} (e (07 (07
&W:(Su— 23 :(5#—5# (7.13)

Note that because this is an infinitesimal transformation that we are expand-
ing to first order, the difference between differentiating £ with 9, or 9, is of
second order.

So
G = 9ap (0%, — 7,00, = €7,) (7.14)
= guu - gaufa7u - gaugaw + O (52) (715)
G — G = — (Ja®  + Gapl®,) + O (€2) (7.16)
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A note to all the relativity fanatics: we are only doing a coordinate trans-
formation. The metric (as a tensorial object) does not change. Because we
are changing coordinates, the same coordinates will label a different point
and the functional form will change. So what we are really doing, in a vauge
sense is comparing the metric at two nearby points from one another. (The
technical term is “Lie dragging” the metric from one point to the other).

Isometry: £ is an isometry if g,, = g, i.e. if

gau€a7u + gauga,y =0 (717)

or

Vi +Vilnu =2V(,6,) =0 (7.18)

i.e. & is a Killing vector.

Maximally symmetric space in D dimensions <= Elw linearily in-
dependent Killing vectors.

Minkowski: D(D — 1)/2 “rotations” + D translations.

7.1.2 de Sitter (dS)

In dS case, from

d 2
ds? = —dt® + di? + % (7.19)
2k -1?)=1 (7.20)

It is clear that the hyperboloid embedding is INVARIANT under any 5D
Lorentz transformation!

5x4 __ 4x3 —
54 — 10 344 =10

5D Lorentz 4D “rotations” and “translations”

4D dS isometries are projections of the 5D Lorentz group onto the hyper-
boloid!

ot — ot = R 2V + RM 2 (7.21)
z— 2 =R 2"+ R* 2 (7.22)
(7.23)
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1) “Rotations”

Here R*, = 0 and R, = 1.

Nuw R R 5 = Nag, Lorentz in 4D (7.24)
= 6 generators (7.25)

2) “Translations”

Here:
Rt =a" (7.26)
R, = —kn,,a” (7.27)
Rt =", — bkny,a“a” (7.28)
R, = (1 — knata”)"/? (7.29)
with kn,,a”a” <1 (7.30)
1 —+/1—kn,ata”
and b = i (7.31)
knara”
Therefore

o = ot 4 a* <\/1 — kng otz — bk‘nm,xﬁaD> (7.32)

To see that this solution is de Sitter, use the coordinate transformation

_ % {k’f‘Q cosh(Vt) + (1 . ‘2/’2) sinh(\/Et’)] (7.33)

7=z (7.34)
ds? = —d? + 2R 477 (7.35)
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Recall the Friedmann equation for w = —1, k =0
P
3H? =
M;
ag 3(14+w)
P = Po <;) = A
3H)= — - H=Hy=+ A
M2 R VEYVE
a = ape™™!
cods? = —dt? + age* otdi?

Indeed, this is de Sitter with k = HZ!

Event horizon:

< d¥ < d 1
d = t — Hot/ - —'
H @( )/t a(t’) € \ eHot H,

65

(7.41)

This is also the apparent horizon. The event and apparent horizons coincide!

= apparent horizon is a null surface!
Causal structure? Use other coordinate systems.

7.1.3 Static patch

Change coordinates to

I
~
~

1 /
T (1 iy 5626Mt)
2k 12

eV

T = =

Then the line element takes the form
k(z - dz)?

2 (1 a2\ 4 a2
ds® = —(1 — kz°)dt* + dz Tk

Recall k = HZ; use spherical polar coordinates
dR?

2 2 D2\ 172
ds ——(1—H0R )dt +1—7H3R2

+ R*d3

Horizon : Ry = HLO

(7.42)

(7.43)

(7.44)

(7.45)
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Static patch coordinates cover only the region around the pole enclosed by

the horizon — causal patch!

staticity is to be interpreted with care.

In a sense de Sitter geometry is really not static but STATIONARY -

partilces keep flying around but the setup is in equilibrium! *

7.1.4 Global coordinates

Consider now k =1, w = —1 case:
3 A a
3H?> + = = — =3H? H=-
* a?  M? 0 a
ca?+ 1= Hid?

1
cLa= I cosh(Hyt)

1
= ds® = —dt* + 77 cosh(Hyt)d3
0

or, in terms of conformal time

B dt_H/ dt _/ dy
=) T cosh(Hgt) ) coshy

— 2tan" ! (ef0h)

Hence efo! = tan(n/2).

(7.46)

(7.47)
(7.48)

(7.49)

(7.50)

(7.51)

Tt should be noted that the classical case is static; this comment is for the real world

case when you have to couple quantum fields to the metric (cf. Hawking effect)
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Hence:

0= () o () o s 0

Conformal factor blows up at n = 0,7

Unwrap:

Future spacelike infinity

Static/casual patd&x

Past spacelike infinity

t— o0

Static/casual patch

T = const | 4~

- Ry, =dg =

/ t =|const

67

(7.52)
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t — —oo limit takes one to the PAST event horizon! This is where we
place the casual boundary conditions — the past boundary conditions for
the Cauchy problem!

Inflation is determined by boundary conditions on the past event horizon
— any spacelike surface crossing it and carrying other initial data can be
evolved back onto the past event horizon.

We require consistency of these initial data with conventional quantum
field theory — this means, the observables carrying the information about
the initial data must be the usually defined local operators of quantum field
theory there. So we expect that at very short distances the theory on the
past horizon should behave as a normal flat space QF'T, since that is the only
framework we both know and trust.

Other possibilities (i..e theories with nonlocal phenomena NOT ordinary
QFT approximation at low energies) might also occur but currently they are
NOT under control (or trusted!) —hence we will ignore them in what follows.



Chapter 8

Lecture 8

8.1

Cosmological problems

The universe is

OLD: t ~ 7= ~ 10" years ~ 10,

Very nearly homogeneous and isotropic: 5—5 ~107°

Nearly spatially flat ﬁ <1072

Full of the “right” kind of structure (galaxies, microwave background

etc) but devoid of the “wrong” kinds (beasts: monopoles, strings, do-
main walls, exotic particles)

Or it is ... Dark energy ~ 70%, Dark matter ~ 30%.

Cosmological problems: difficulties in reproducing the observations from
arbitrary initial conditions. Two categories, by origin:

1.

2.

Gravitational

Particle physics

some of the problems arise from interplay of gravitational physics with par-
ticle physics.

69
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70

“Sources” of problems

1. Locality

2. Causality

3. Rate of expansion

4. Gravitational instability

5. Production of undesirable objects (particle physics)

6. Production of desirable objects (structure formation)

Consider a system of particles which are MARGINALLY GRAVITATION-

ALLY BOUND:
This means that the radius is of order of the Schwarzschild radius,

Examples of problems
1) Age and flatness

3
0

R

2
p

P

Ro NGNMN

SO

M,

NG

Ry ~
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The geometry felt by a point particle is Schwarzschild, by Birkhoff’s the-
orem.

2G Ny M 2Gy M\
ds* = — (1 - jj[ ) dt* + (1 - ;V ) dr® + r*dQ; (8.3)

Once a particle passes through the horizon it will fall all the way to the
“crunch” singularity at » = 0; the typical infall time is

/ \/W

ie. Tin ™~ RON%NHO (85)

~GyM  (8.4)

See Carr & Hawking [5].
Therefore the system is doomed to collapse in a time scale set by the initial

density!

Since in Einstein’s equations

an 3(w+1)
o= () (8.6)

at early times p > pnow — so the collapse time was much shorter in the
past. What prevented the universe from collapsing before it reached the age
of 10'° years?

Another way to see it:

k p
2 _
BH? +3-5 = 0 (8.7)

Define p. as the energy density of a spatially flat universe for a fixed H:

27172
pe = 3M2H (8.8)

Then; a measure of spatial flatness is

3k/a? k
r= o = (8.9)
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4

For a radiation dominated universe, H? ~ Prad ~ @, while for a matter

dominated universe, H? ~ pat ~ a~>. So

(8.10)

a®> radiation
T~
a matter

At early times r is smaller than at late times, when the universe is com-
prised of “normal” matter. Then, as time goes on

a

4 4
‘Z* A

The turning point is roughly given by the equality pypatter ~ @ 2. Theen
if h =1 the age of the universe is ~ 2t,.

In the case of our own universe, observations show that
k < 1

— 8.11
a’H? ~ 100 (8:.11)

This means that t, > tnow ~ 10'0years.

But this requires a tremendous fine tuning of the initial conditions! Age problem.

Note: .
r = 272 (8.12)

Assume p = po(ag/a)* for radiation. So then compare rmow to some initial
To

mow o a(Q)Hg — a(2)p0 (813)

- (%)2 (8.14)
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But: )
(ﬁ) =, ]2 (8.15)
Qo Pnow
Hence
Tnow _ £0 (8 16)
To Pnow

Now p ~ (107%eV)*, then py ~ (M,)* ~ (10*eV)*, hence

oW 962 (8.17)
To
and so
ro < 107% (8.18)

Flatness problem!

2) Horizon

Assume now that £ = 0 to conform with observations; then for simplicity
assume that the universe is radiation dominated:

a=ag\|— (8.19)

The particle horizon is

Ly = a(t) /0 = (8.20)

Rop= 2 =2t =Ly (8.21)

So:
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A typical scale of homogeneity today is given by the apparent horizon size

It scales as

Thus

1
~ — 22
¢ H (8:22)

a 1 t
b ly— = — | — 8.23
0&0 Ho to ( )
l 1/t
— = — 8.24
Lh QtHO to ( )

1 to
==/ 8.25
2 Ho/To t (8.25)

At the last scattering surface, we find temperature T, ~ eV ~ 10007p.
Since then photons moved freely, and so they carry information about the
homogeneity scale then. But since

we find that

so at the last scattering surface

Qg to
T=T (-) — T,/ 8.26
0 a 0 t ( )
¢ T
== 8.27
¢
— ~10° 8.28
I (8.28)

and so there were about (¢/Lj)* ~ 10° casually disconnected domains then!

(T
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All the way down to the Planck scale
l
— ~ 10" 8.29
- (529

— there were about 10?° disconnected domains!

3) Homogeneity
See [16].
Structure likes to form over time scales set by the age of the universe. For

arbitrary initial conditions that would suggest a lot more inhomogeneity and
anisotropy than we see. What arrested the Jeans instability.

4) Origin of structure

Instead of the structure we see is “properly” distributed.
SCALE INVARIANT SPECTRUM.

o (In k)" * (8.30)

P
n—1<k1 (8.31)

What set the right initial conditions for the formation of such structures?

5) Beasts

At very high temperatures, many particle physics symmetries are restored.
As the universe cools, symmetries are spontaneously broken

T>T.

Multiple vacua structure leads to the emergence of topological defects.
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Monopoles, strings and domain walls — their number density should be set
by the production rates governed by the Kibble mechanism. Basically, just
by causality there should be one such object per Hubble volume at the time
of transition. So later

a,\3
n~ H (—) (8.32)
a
Very large energy density, since their mass scale is large!
3 (0x)?
Pmonopoles ~ MGUTH. <E> (8.33)

Why don’t we see them?

Bottomline: generic initial conditions DO NOT lead to something like our
universe in a natural way IF the universe is dominated by normal matter,
relativistic or not!



Chapter 9

Lecture 9

9.1 Inflation: a super-cure or snake 0il?
Recall again the cosmological problems:

1. Age and flatness

2. Horizon

3. Homogeneity and isotropy

4. Origin of structure

5. Beasts (monopoles, strings, domain walls, exotic particles

Also: cosmological constant, singularities, ultraviolet sensitivity. . .

Consider also the “sources” of problems
1. Locality

2. Causality

3. Rate of the expansion

4. Gravitational instability

5. Production of undesirable objects

6. Need to produce desirable objects

7
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Locality and causality, and also decoupling, are fundamental conerstones
of physics, which are ensuring predictivity of our algorithmic schemes to do
computations.

“Behaviour of an electron in your lab does not depend on the
electrons on the moon™!

To date, we have NOT seen compelling evidence for action-at-a-distacne.
If anything, we have accumulated a lot of evidence to the contrary. We have
developed theories of relativity which are tested and found to agree with
nature to great precision.

So we want to keep locality and causality; at least, until we find a predictive
theoretical framework within which they could be relaxed — but in such a way
that they are NOT INCONSISTENT with any observations.

Currently, we can only devise bounds on departures from locality and
causality, and these suggest that any violation of locality and causality within
the current framework should not play a significant role in addressing cos-
mological problems!

Intermezzo

How can it work? Consider the idea of HOLOGRAPHY: the information
about the system is encoded on its causal boundary.

BUT MORE IMPORTANTLY: the information and energy density in the
universe is LIMITED: the densest objects in the universe, both informatically
and energetically, are BLACK HOLES!!!

So consider an ultra-dense universe which is TIGHTLY PACKED with
black holes

1. Flatness problem:
Equivalent to tendency of a gravitating system to collapse BUT once

More strictly, we want a cluster decomposition principle. The eletrons can be effected
by particles on the moon (after all, the tides are!) but it should be a small effect.
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system reaches the densest possible state, it contains ALL the informa-
tion it can possibly have — interactions <= exchange of information!
= Requires NEW information!

Since there is no return for it the interactions should SHUT DOWN!
= no more gravitational force, no more flatness problem! Similar
thoughts [14], papers by Banks& Fischler.

2. Horizon problem:
The system in the densest state may be as big as one likes: then it
consists of many causally disconnected parts! Thus, while big, since
each part is in its own densest state — they are all the same!
Problem: how does one make a transition from such a holographic,
dense, initial state, into a state corresponding to our very DILUTE
universe where normal gravity operates?
An alternative way to attack the flatness problem: invent arguments to
enforce symmetries in the initial state, which then forces the universe
to be FLAT: e.g. SUSY

Pre-Big-Bang, ekpyrotic universe: very cold initial state. Note that the
initial state is ALWAYS somebody’s version of Hell

Hot big bang: Judeo-Christian Hell
Cold pre-big-bang: Nordic Hell - NIFFELHEIM

Question: what does ALIEN HELL look like?

So we can address the cosmological problems by devising normal effective
field theories, which are local and causal, where at early times the dynam-
ics of the universe is CHANGED such that the cosmological problems are
ameliorated!

1) Flatness
Recall that

p
3H? 4+ 3— = 9.1
* a? M,,62 (9-1)

ag\ 3(1+w)
o= () (9.2)
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Problem: for normal matter (p = 0. for non-relativistic particles, and p =
p/3 for radiation) p dilutes FASTER than the curvature terms!

So if we assume virial initial conditions, i.e. that energy is equally dis-
tributed between all parts of the gravitating system, the curvature TAKES
OVER QUICKLY! Namely, it will dominate after the universe has expanded
by a factor of e, say, and a typical timescale for that is

1
T “Lifetime” (9.3)

But what if we ALTER somehow the interactions so that the energy density
p dilutes more slowly? We need 3(1 +w) <2 — w < —1/3.

In that case, p will always dominate! Of course, such a p would also dominate
over normal matter, so how do we eventually get the normal universe, with
normal matter contents (protons, electrons, galaxies, ...) to emerge?

This strange p had better be UNSTABLE: it needs to DECAY into normal
matter after some (presumably LONG) time!

2) Horizon

Recall that the horizon problem came from the fact that a typical homogene-
ity scale

(o~ —— (9.4)

grows more slowly in a normal matter (w = 0, 1/3) dominated universe than

the particle horizon:
t a 9.5
Ly =alt xt .




9.1. INFLATION: A SUPER-CURE OR SNAKE OIL? 81

But consider what happens when the equation of state is given by some

general w:
£\ B
a = ag (—) (9.6)

So:

2

1 [/ t\ 5w
_ L[t 9.7
¢ Ho(to) (0.7)

t /
Lh:tﬁ/ d7t2 (9.8)
0 (#)50w
2

t3(1+w) 1 __2 x173(1iw) }t w # —
3(1+w) to

1
- tIn <£> w = —; (59)

This diverges as ty — 0; so regulate by taking ¢ty = ¢, = 1/M,. Thus

143w 1
304wt w > —3
_ 1
[14-3w| | (Mpt)3(w+1) 1
3(1+w) l s - t} w< —3

So in the case w > —1/3:

2
3(T+w)
L Ll (i) (9.11)

Ly t \to

¢ to\ L Erm £, 37w
ie. — ~ [ — =|— 9.12
e (@) () 02

and /¢ increases more slowly than Ly
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In the case w < —1/3:

(9.13)

Scale of homogeneity grows as fast as the horizon — homogeneity is pre-

served at large scales!

3) Homogeneity problem

Note from
. k P
2H +3H* + — = ——
3+ =
k p
3H? +3— = —
+ a? Mg
d [a a? .
d-=— (- )+—==H*+H?
e dt( )+a2 -
we get
a 1 1+ 3w
—=——=(p+3p) =- p
6M§ 6M]§

when w < —1/3 and p > 0= d > 0.

ACCELERATED EXPANSION!

The Hubble parameter is given by

got__ 2 1
a t

3(1 4+ w)

when w = —1: H = const = H, (funny limit).

(9.14)
(9.15)

(9.16)

(9.17)

(9.18)
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for w < —1/3, as t > 1/M,,, H approaches a constant!

So: Rag = 1/H = const. We know
H > Hy — Rag < 107 %m (9.19)

Recall that R g controls formation of structure. Pertubations grow on scales
¢ < Rap but their growth is arrested at scales ¢ > Rap. — they get
blow away by accelerated expansion of the universe faster than they can
form! These very short distance scales are IRRELEVANT TODAY - they
are shorter than a millimetre now and have been processed many times over
by subsequent non-linear evolution.

4) Structure

Structure comes from the inhomogeneities spontaneously generated by quan-
tum perturbations.
MORE LATER

5) Beasts

Beasts are prevented from overpopulating the universe today by two effects

e Their initial density is dramatically diluted by accelerated expansion

1
p ~ — for monopoles!
a

— redshifts faster than the medium during accelerated expansion, p ~
—-3(14w)
a .

e The medium during expansion with w < —1/3 is designed such that
when it decays, it does NOT recreate a large population of beasts!
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Lecture 10

10.1 Mechanics of inflation

Consider again the Friedmann equations & energy conservation

k P
3H? +3— = — 10.1
+ a? M3 (10.1)
P+ 3H (pr + pr) = 0 (10.2)
Pk = WkPk (10.3)
ap 3(1+w)
Pk = Dok (;0) (10.4)

Design an agent for whom the equation of state is such that w < —1/3. This
contribution then starts to dominate quickly after the onset of the regime of
validity of Einstein’s equations.

10.1.1 Benchmarks

a 1+ 3w 1
o= 612 p >0, when w < —3 (10.5)

What does inflation need to accomplish?

85
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1) Flatness problem:

Suppose that at the onset of inflation, p ~ 1/a®. We know that without
inflation we would need a finely tuned value of

k

2 [12 <107
CL* *

During inflation H ~ H, ~ constant. So:

~ H, ~ constant

Q|2

. a & agexp(Hy At)
Thus we have
aH ~ agHyexp(Hy At) (10.6)

at the onset of inflation we have NATURAL initial condition, aH ~ 1. so at
the end of inflation we need k/a?H? < 107% or therefore

aH > 10%

So
€H0 At Z 1030

ie. HyAt > 1n10% ~ 69.

We define the # of e-folds of inflation as an equivalent measure of the
duration of inflation:

a = ape” (10.7)

a(final)

N = In 28
a(initial)

(10.8)
To solve the flatness problem we need N > 69 (give or take).

2) Horizon problem

After inflation terminates we can assume that the universe becomes radiation-
dominated: T > m. Then

JE =gy (10.9)
4= Gy — = Aoy — .
t. Vi
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So today ¢y ~ 1/H, and thus
(= Lt Vot (10.10)
AR 0 '
at earlier times.

l, = \/tot, is the homogeneity scale today projected into the past:
t

This scale MUST be smaller than or equal to the particle horizon at the end
of inflation!

t* dt/ 1
Ly = alt, —~ —cV e 10.11
H &( )/0 &(t,) H*e € ( )

so at { ~ /tot,, { < Ly and

t
N> [ 2~ 10% (10.12)

*

N > 69 (10.13)

Thus > 6569 e-folds of inflation solve both the horizon and flatness prob-
lems! [17, 18, 19].

Blow the universe up really fast, get rid of the initial unfavourable popu-
lation, and repopulate it by good stuff at the end!
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10.2 Inflation

What is the agent driving inflation? Past inflationary universe should be
homogenous and isotropic!

=No preferred directions!
=No preferred rest frame (no aether!?)

The object which should control the onset and termination of inflation should

therefore be an invariant under rotations and translations, and while it is

impossible to make it constant it should be very weakly time dependent.
SCALAR FIELD = INFLATION!!

Dynamics:

S = /d%\/g (M733 — %(ad))? — V(¢)) (10.14)

1
G, = TR (10.15)
ov
Op = — 10.1
=55 (10.16)
T = 0"¢d,p — %5"1,(%)2 — 6"V (10.17)

Recall that in FRW cosmologies

T = ( —f ol ) (10.18)

Assume that V(¢) has been designed so that it leads to inflation, and check
for consistency later.

This means, that we can assume the metric is spatially flat FRW soon
after the onset of inflation; this should be an excellent approximation.

Thus
ds® = —dt* + a*d7” (10.19)

Furthermore, homogeneity implies translational invariance, so

¢=9(t) = hpd=0 (10.20)
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Thus
¢2
p=+V (10.21)
/2
p= % -V (10.22)
1 [ ¢?
H*= | = 10.2
3 v (2 +V> (10.23)
G+3Hp+ 09,V =0 (10.24)
g Vi
w=L=-2"" (10.25)
P4V
Need:

1. Negative pressure with w < —1/3; in fact the more negative the better

2. Inflation should be sufficiently long:

N = H At > 69

So the regime of negative pressure should be SUSTAINABLE! This implies
that if ¢, V' are such that w < —1/3 it should last for a long time!

So from .
C_y
w=Z2 (10.26)
&S+V
and requiring that w — —1 implies $2/2V < 1! Then
—3e—1 2
— = —(1-3)*4+0 ()~ —-1+= 10.27
W=y ( )’ + O (&) +3€ ( )
where )
3¢?
€= op slow roll parameter (10.28)

So w &~ —1 implies that

q'bQ
e<<1:>3<<V
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Another slow roll requirement: not only should %2 be smaller than V', but
it should STAY smaller for a long time!

. YAV
3H — =0 10.29
b+ 3Ho + 57 (10.29)
Damped harmonic oscillator! Should have the restoring force effects negligible
compared to the “friction” term:

< 3Ho (10.30)
Define .
¢

= ——, slow roll parameter 10.31
1= "Hg p (10.31)

require also that n < 1.

So: take ANY potential V(¢). Aslong as there exists some value of ¢ such
that the potential is consistent with the conditions

en <1 (10.32)

inflation will occur when we have “equipartition” in the initial conditions.

Inflation HIGHLY REDUCES the amount of fine tuning of the initial con-
ditions — requires that the initial value of ¢ is in the favourable region.

When €, n < 1, the field equations for the zero mode reduce to

3H? = Mlg (10.33)
3H + g—‘; =0 (10.34)
Notice, that in general there would also be the spatial gradients; specifically:
9" 000 C p (10.35)

and
9" 0k0ip € V¢ = 0o (10.36)

Once inflation starts, however, it gets rid of anisotropies and inhomogeneities!
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Notice that ds? = —dt? + a2d# has translational symmetry ¥ — 7 + b
which allows us to Fourier transform the spatial coordinate dependence, and
represent inhomogeneities as wave packets built out of plane waves

o = r(t)eT (10.37)
Then
k2
9" 0k6 006 = — 10" (10.38)
e k?
9" OkOup = —E@ (10.39)

and so as a blows up quickly these terms get wiped out!

The picture: QFT in an inflationary universe is like a system of linear
harmonic oscillators frozen in the same place:

so only the zero mode survives!

Then from
3H? = M% (10.40)
3H¢ = _% (10.41)
solve for a, ¢: note:
% = 3]‘\//[3 (10.42)
¢ = —W/ﬁ (10.43)
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SO
lda 1a %4
i 10.44)
7 (
adg ag M? %
Thus 4
a V
In— = —/ ————d¢ (10.45)
Qo o Mg? g—g
and so
¢V 1%
a=apexp | — ———do | ®agexp | +————+ Ao (10.46)
( o0 M 5 ) ( M} 1%

Bottom line: the slow roll conditions €, n < 1 ensure that V, 9V/d¢
and the ratio of these terms are nearly constant. Then a small change in ¢
produces a HUGE increase in a yielding nearly exponential inflation!

Notice also that

LV [V
~ dt | ~ At 10.47
a & agexp (/to 502 ) ag exp ( 502 ) ( )

.. Inflation is approximated by de Sitter space metric in spatially flat slicing!
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Lecture 11

11.1 Geometry of inflation

Pictorial representation of how inflation solves flatness, age, horizon and
homogeneity problems:

Consider a closed, k = 1 inhomogenous universe:

where each patch is approximately homogenous and size H~!.

Blow up the balloon really fast:

93
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R> H™ !

All of our universe fits into small homogenous patch!

11.1.1 Penrose diagram:
Recall for decelerating FRW spatially flat universe

I

Matter
dominated

AH Radiation
dominated

Iy

For inflating FRW universe with k£ =0

I

EH

what does the solution look like for an inflationary universe where inflation
terminates and reheating occurs such that after inflation the universe is dom-
inated by normal matter (relativistic or non-relativistic)?
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Cut and paste: imagine an observer made of some indestructible material,
who survives through inflation and reheating. The causal experiences of such
an observer can be encoded in the causal patch:

Decelerating (FRW) era

>—Reheating (“big bang”!)
Inflation

Ran = Mp/\/ﬁ

Possibilities: £ =0, —1 or +1.

Inflation does not remove cosmological exotica — it postpones the epoch
when they are relevant: indeed in the case of spatially closed universes,
k =1, if there is no cosmological constant in the future will recollapse WILL
eventually occur, but it will take a long time for this to happen.

11.2 Role of the apparent horizon

Apparent horizon controls the growth of perturbations —i.e. inhomogeneities.

As a test consider a massless scalar field in an inflating patch:

O¢ =0 (11.1)
ds? = —dt* + a*d7” (11.2)

Consider the case when inflation is well-approximated by the de Sitter metric:

a = age’™ (11.3)
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Then .
¢— 5V +3Hd=0 (11.4)
a
For simplicity pick ag = 1 and change coordinates to conformal time:
ds? = —dt* 4 2ol dz? (11.5)
= *M0t (—(e™otdt) + dz?) (11.6)
1
= [ et = ——e T 11.7
U / e i (11.7)
2 _ 2 22
ds? = o (—dn® + dz?) (11.8)

Note: n < 0 and flows from —oo to 0 as ¢t goes from —oo to oo.
17 — 0 limit of inflation!
Then

. d
¢= d)’d—z = —Hyng' (11.9)
¢ = Hyn(ng') = Hy(n*¢" + ng) (11.10)

So with this, a = —(Hyn) ™! we have

HEPS" + Wng' — 3HInG' — BV =0 (11.11)

" —2n¢' — *Vih =0 (11.12)

SO

First, decompose into Fourier modes

6= on(n)e"” (11.13)
and second, transform ¢(n) = ne(n).

SOk = NPk + Pk (11.14)
¢ =np" +2¢. (11.15)

So
N0} + 2P0, — 2PF, — 2ok + 0k = 0 (11.16)



11.2. ROLE OF THE APPARENT HORIZON 97

or:

2
" + (k—ﬁ) or =0 (11.17)

where k = |IZ |. This equation can be solved easily in the asymptotic regimes
k> V2/n| and k < v2/[n]

In] (11.18)

) Acos(kn +9) k> 2
o %—1—3772 k<<|\/7\§

This yields, useing ¢, = npy:

Ancos(kn+46) k> |—\{”§
A "l (11.19)
A+ B77 k< Tal
or, noting that a = —(Hyn) ™! and defining
A - _ B
we have
Encos(kn+0) k> |—“{”§
=< 2 11.21
Pk {@ a% k< l_\{”ﬁ ( )

Note now: the physical wavelength at the Fourier mode with a fixed
comoving wave number k£ is, from

T - k
Mt — ki = <E> (a) (11.22)
k a 1
f=—=A=—=— 11.23
=P a = k Hynk ( )

Then when k> v/2/[n|, A < \/§1H0

and when k < v/2/|n|, A > \/EIHO‘
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Apparent horizon: Ry = 1/Hy, so

\/§ RAH
B> — s A€ == (11.24)
] V2
\/§ RAH
< — — 2> 244 (11.25)
bl V2
(11.26)
Thus: note that when
N TAH o cos(kn + 6) (11.27)
— — — .
\/5 k a n
R _
A»%—wbkﬁd—}—g (11.28)

FREEZE-OUT!!

Consider a mode with fixed k. Say something in the early universe excited
it; so there is some non-vanishing ¢, associated with it.

The physical wavelength is

1 th

- (11.29)

)\ fr— — fr—
kHyn  k

a
k
and as inflation proceeds (t — oo , n — 07) it is getting exponentially
stretched! While A < R AH / \/5, the mode behaves as a linear harmonic
oscillator in a box with expanding walls:

b = cos(kn + 0) (11.30)

Pg
@
oL
g{mg

ift!

But once inflation stretches A to scales greater than R/ V2, the mode
freezes:

¢k:@+£—>@!

5 (11.31)
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Perturbations with wavelengths greater than the apparent horizon leave a
small imprint in the form of a.

Causal description of the evolution
of pertubations

interior of the apparent

horizon where modes
collapse into structure

exterior of the apparent
horizon where the modes
are frozen

A= alk




Chapter 12

Lecture 12

12.1 QFT in FRW

Consider a Gaussian scalar field in an FRW background. The action is
1 2
S = —/d4x\/§ (5(8@2 - %&) (12.1)
and on the fixed FRW background, ignoring backreaction (i.e. assuming

T35 < ITl])
ds* = —dt* + a*dz? (12.2)

The field equation (O — m?)¢ = 0 becomes
. 1 o
o+3Hp — =V +m?p =0 (12.3)
a
Note now that H = a/a # const. Instead it is some function of ¢.

The right approach for solving this differential equation is to first decom-
pose its solutions as plane waves in Z-space, which are the good basis func-
tions consistent with the spatial Euclidean group. So

d(7) = di(t)e™= (12.4)

and then, with k& = |E‘,
. . k?
o + 3H oy, + (? + m2> ok =0 (12.5)

101
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next, transform to the conformal time coordinate

_ [ g _ 1
" a’ dt a
So, let
H_lda_a’
adn  a
Thus
g0 _ddn _H
a adt a
/
b=
a
o=t () = % _ Mo
Fa\a a? a?

Then substituting
i 2HO + (K2 + mPa?) ¢y, = 0

Now: get rig of the o« H¢j. term. To see how, plug in
br = a”px
Rewrite all the derivatives in terms of the new variable yy:
Gh = a6} + aa"Hpy = a* (¢ + aTtpy)
k= a® (g + 20Hg + a(H + aH)pr)
Pick o = —1! Then

i — 2HE, — (H = H ) + 2HE, — 2Hop + (K + mPa®)p, = 0

So
of + (K> +m?a* —H — H*)pp =0
Note that
a//
H+H =—
a
So the mode equation in the canonical form is

a//
O + (k2+m2a2— ;) o =0

(12.6)

(12.7)

(12.8)
(12.9)

(12.10)

(12.11)

(12.12)

(12.13)
(12.14)

(12.15)

(12.16)

(12.17)

(12.18)
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For example: in spatially flat slicing in de Sitter,

_ Hot _ 1
e Hon
Hence
, 2 " B 2
¢ _H0773’ a ?
So "> )
i (1 g = =0
ie.

2
m
2—-7p
0

H
o+ | K~ " o =0

What about the exact mode solutions to these equations?

103

(12.19)

(12.20)

(12.21)

(12.22)

So: suppose that the universe is dominated by a single-component fluid

with p = wp, then (lecture 6)

¢\ T
a = Qo t_
0

2 Mt%
n= / 70 4t = { Bwrl
ln%
S0 ,
@ = ao[(3uw + 1))
1
w< -z = 7€ (—00,0)
1
w>-—g = 7€ (0, 00)
1
w=-—g = n € (—o00,00)

Notice also that

T2 2 ]
a 3w+l [3w+1 n?
2(1 — 3w) 1

(14 3w)?n?

RN

g g
I
I
W= W=

(12.23)

(12.24)

(12.25)

(12.26)

(12.27)
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Therefore:

4 2(1-3w) 1
©r + (k2 +m?ag (3w + 1)7) T — ﬁ?) =0 (12.28)

Now consider the cases w < —1/3 and w > —1/3.

12.1.1 w> —1/3

+1<

<
3w+ 1 o0

n € (0,00)

Near the singularity the leading term is 1/5?; all the solutions, irrespective
of the mass and the momentum, have universal behaviour which is VERY
sensitive to the boundary conditions on the singularity.

1 8(1— 3
pe o a=g <li\/1+7( w>> (12.29)

3w+ 1)?

These are some complicated contributions of plane waves of a fixed frequency,
e*™n_ Dressed up by strong interactions!!!!

In the limit 7 — oo, the dominant term when m # 0 is the mass term (for
fixed k).

It simply means that as the universe expands, the wavelength of the fluc-
tuation increases and so the momentum contribution to the total frequency
becomes negligible compared to the contribution coming from the mass term.

— the field becomes very NONRELATIVISTIC!
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Let us ignore the mass term for now. Then, in this limit there is a bunch
of LHOs!
o+ ko =0 (12.30)

Plane
waves

12.1.2 w< —1/3

Now we have

—o0 <

< -9 — 50,0 12.31
Sl s % n € (—o0,0) ( )

The equation for a scalar field

2(1 —3w) 1
oF + (k2 - W?) or =0 (12.32)

Note:

1)

In the limit » — —oo both the terms proportional x a”/a and the mass
terms (which we are omitting) are negligible. Free field theory:

— o+ Ko =0 (LHOs) (12.33)

Plane
waves

Bottomline:
Can pick the vacuum on null boundaries which admit solutions that behave
like Minkowski space vacua — same short distance physics!
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In the case w < —1/3 the null singularity is much more harmless than the
spacelike singularity for the w > —1/3.

2)

When n — 07, we have the freezeout phenomenon which we have discussed
earlier for m = 0. For general m we can have instabilities!
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Lecture 13

13.1 QFT in FRW take II

Consider a massless scalar field
1
S = —/d4:1:\/§§(8¢)2 (13.1)
In flat FRW ds? = —dt? + a?d#?. The field equation
. A
¢+3H¢—EV =0 (13.2)

can be simplified by using the conformal time n = [ d¢/a(t) and the substi-

tution
1 o
6 = ~prln)et. (13.9)

The simplified equation of motion is

(k2 — a—//) o =0 (13.4)

We have also seen when w # —1/3 that

a” 2(1-3w) 1
2

o (1+3w)?n? (135)

107
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Notice that this seems to blow up in the limit w — —1/3 (cosmic strings).
This is a slightly subtle case, since in this limit the coordinate transformation

3(1 4+ w)  suwn -2,
= ———130+w) —1 13.6
1+ 3w 0 (13.6)

is ill-defined. (It blows up and all values of ¢ map to one value of n!) We can
fix it by L’Hopital’s theorem to find that

1 = agexp(n/mno) (13.7)
and so ,
1
. (13.8)
a Mo
General mode functions can now be found; note that for w = —1/3 the

modes are harmonic oscillators with a tachyonic mass m? = 1/n3. This is
the instability of the static Einstein universe alluded to earlier!

When w # —1/3
112
P+ (k2 - F) o =0 (13.9)
2(1 — 3w) 1
2z ) - 13.10
WEGere Y73 (13.10)

What are the solutions to this equations? Rewrite as
g+ (PR — 1) = 0 (13.11)

and define the variable 7 = kn. Note that

dQSOk
=T 13 (13.12)

Bessel equation in disguise!

Indeed, define
Pr = VT (13.13)
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Then

dep — —doy 1
I —\F—+7 (13.14)

d*ox P | 1 diy 1
= _— - — 13.15
dr? VT * VT dr o 4732 Vi ( )
By substituting back we get
Py | dyy 1
2 I Vg = 13.1
T dr2 +7 d + 1% 1 ¢k 0 ( 3 6)

To put this in the form of the canonical Bessel equation we define v? =

p? +1/4 and get

d? d
2 di’“ + r% + (=) Y =0 (13.17)

While the solutions are (linear combinations of) Bessel functions, it is
convenient to use the particular linear combinations known as the Hankel
functions, as these are the combinations that behave asymptotically as plane

waves
Ur(7) = HE(r) =5 \/gem (iz' [T - 2”: 17rD (13.18)

and where

H;(1)" = H/(7) (13.19)

For large 7, the variable ¢, = \/TH>F behave as the positive and negative
frequency solutions. Recalling that 7 = kn:

2 2+ 1
on 251 2 exp (iz’ [lm— ”I 7rD (13.20)
m

Ignore the phase as we can always absorb it away!
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Thus the general solution for ¢ are linear superpositions of the momentum
modes:

JE -
o(t, 7) = Y HE (ke (13.21)
a
where
— 1 w — 1
=\/ u? 13.22
3w +1)2 1 + 3w ( )
Note that
Plane
w > —1/3, n € (0, 00)
SO T>1 <= n— o0
w < _1/37 n G (_007 0) p']anc
so: |1 >1 <= n— —

Recall the flat space field theory. There the solutions could be written as

¢ = /2 3, eUZF 0 4 alei kT Ek”) (13.23)
7T
where
laz, at] = (2m)*2E,6@) (k — q) (13.24)
others =0 (13.25)

and we can define the vacuum as the state annihilated by all a;:

ag|0 >=0 (13.26)
Can we follow a similar procedure in this case, at least in the limit 7 > 17

YES! we can devise the canonical quantisation procedure in FRW.
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So start again with the action

S = —/d%\/g%(aw (13.27)

in ds? = —dt? + a?d#? coordinates:
S = l/dtd3:i:'a3 P — i(%ﬁ (13.28)
2 a? '
So the conjugate momenta are
oL .
T=—7=a (13.29)
99

and we can impose the equal-time canonical commutation relations
[o(t, 2),m(t, )] = @7~ §) (13.30)

However: these variables are INCONVENIENT because of non-linearities!

Instead, we work with the conformal time coordinates and note ds? =
a?(—dn? + di?)

1 L 19” = (Vo)?

1 .
=3 / dn 37 a*(¢* — (V¢)?) (13.32)

Recalling ¢ = a¢, we find that
adf = (a9) — d'p = (ag) — aHo = o — Hyp (13.33)

Note: we CAN start with this action, upon noticing that the canonical
momentum is

o
= 5

(similar to an electron in an external field!)

T =¢' —Hy (13.34)
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Alternatively:
(¢ — Hp)? = ¢ + H*? — 2Hpy (13.35)
= %+ H2? — H(P?) (13.36)
=7+ (H? + H)® — (He?) (13.37)
So

2

[ J/

1 1
s [z (¢4 0e +30) - 5 [adangsy (33

boundary term

By dropping the boundary term (variations d¢p — 0 on the boundary) and
recalling that

"

H+H2 =" (13.39)
a
we can put the action into its final form
1 "
S == / dnd®z (@'2 + a—go2) (13.40)
2 a
Now: or
P = 0 = (13.41)

(we use P instead of the more cumbersome 7,) and the equations of motion

are y
a

¢ — V3 — —p=0 (13.42)
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Lecture 14

14.1 QFT in FRW take III

Canonical transformation: since

5= % / dy 47 (w (Vo) + %"902) (14.1)

we can follow the canonical quantisation procedure. Define the momentum
= gg/ = (14.2)
and write down the canonical equal (conformal) time commutation relations
lp(n, @), P(n, )] = i6® (% ~ 7) (14.3)

[o(n, T), 0(n,9)] = [P(n, T), P(n, §)] = 0 (14.4)

From the field equation

8290 CL//
— +—¢=0 14.5
ot a ¥ (14.5)
we find that there exists a conserved current
Ju = U 0up — (Oup™)p) (14.6)
Thus the inner product on this space can be defined as usual
(s} =1 [ &7 (016~ o1'v2) (147

113
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Note: in terms of an arbitrary coordinate system, and original, physical
variable ¢ the inner product is'

<@Wﬁ=g/&ﬁﬁfwmvmrﬂvmmw> (148)

We are interested in the Fourier transforms of ¢ since they give us a simple
momentum space representation. So define

3
(n,7) = Ak b(k )eiE'5+bT(E )e—i“ (14.9)
©(n, )72 .1 ] :

where we choose a slightly different normalisation because in curved space the
concept of local energy density and is is tricker — just recall ¢” — V2varphi —
%Qp = 0 where the “mass” is time-dependent.

From the definition of inner products, we can now deduce that the anni-
hilation and creation operators are related to the Fourier transforms (),
Py(n) of the fields and momenta,

&’ - —ik-E
or(n) = W@(ﬁaf)e (14.10)
4’z iR
PE(U)Z/i(QW)S/QP(n,x)e g (14.11)

according to (adopting k = |&|)

b(k,n) = % (\/Esok(n) + %P(n)) (14.12)

—LUMW—ﬁm@ (14.13)

(k) = 75

IThe reason that we refer to those as the “physical variables” is that it is their stress-
energy tensor that couples directly to gravity
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Note: while o' (n, Z) = ¢(n, T) we have

L) = / % o' (n, B)e* (14.14)
= / (2(;% go(n,f)e”lg'f (14.15)
= p-k(n) # er(n) (14.16)

Same for the momentum!

Now, for the Fourier transforms the field equation reduces to

"

©n(n) + (k‘2 - &—> or(n) =0 (14.17)

a

and as we know the solutions are the Hankel functions, which we now nor-
malise as

™ _
ur(n) = =/ g0, (kn) (14.18)
and uj = — gnHj(lm) (14.19)
where
3|l w-—1
= — 14.20
2 ‘ 1+ 3w ‘ ( )

Note: we have absorbed away a vk, by writing the measure of the Fourier
transform as oc d*k rather than oc d*k/|k|.

Thus, since H = H, "

pr(n) = b(k)ug + b (—k)u; (14.21)
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and so
s dSE ik-7
©(n, T) Z/ng(ﬁ)ek (14.22)
&’k Ny kT I\ * ik
&’k 7 ikE 1t (N, *—ikeE
= ELE b(k)upe™ ™ + b'(k)u” e (14.24)
|

Now from the canonical commutation relations one can see that, by the
relations of b, b’ with ¢, P we have indeed

b(Fk, ), b'(,m)] = 6O

: ) (14.25)
[b(k, n), b(q,

1), b1 (g.m)] = 0 (14.26)

i.e. precisely the second quantisation algebra!

Thus we can define ADIABATIC vacuum (or thermal, Bunch-Davis or
Euclidean) vacuum as the state |0) annihilated by b(k,n):

b(k,n)|0) = 0 (14.27)

Note: in flat space limit

—

b(k,n) = b(k)e ™" (14.28)

and so |0) is constant up to a phase — all of its evolution is reduced to an
irrelevant phase factor!

THIS IS NOT THE CASE IN CURVED SPACE, and in particular not in
FRW

In general, B B
b(k,n) # b(k)uk(n). (14.29)



14.1. QFT IN FRW TAKE III 117

o) = = ot k) (14.30)

e L ko (14.31)

V2k

and so INDEED in the limit || — oo, corresponding to the Minkowski like
regimes

Howver, we know that

1 - 1

_—— w _

w < 3 3
In| — oo we do

| — o0
get
. 1

b(k,n) — ——=b(k)e "t (14.32)

V2k

and so this is WHY the adiabatic vacuum reduces (to leading order) to the
usual Minkowski vacuum in this limit!

10) 7% (o) (14.33)

This is the technical reason why we pick this state.

However, as we will see

bk, 1) = b(k) fi(n) + b (=K)g(n) (14.34)

and so we get an admixture of a creation operator!

So
b(k,n)|0) =0 (14.35)
— fi(mb(k)[0) = —gi(n)b (—F)|0). (14.36)

i.e. |0) is not ewactly the same as the Minkowski vacuum, because the action
of the annihilation operator corresponds with the opposite momentum (like
a “hole”). This is called a SQUEEZED state (invented by Schrddinger in
1927).
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But because

(1) Inl—o0
o) 0 (14.37)

(as we will soon see) this squeezed state reduces to the Minkowski vacuum.

In general: the formalism of transformations which mix b, b’ as

fi(n) + b (=F) g (n) (14.38)
3 —k)gi(n) (14.39)

is called a Bogoliubov transformation, as long as they preserve the canonical
commutation relations. i.e.

[b(Fk, ) b1(d@,m)] = i6(k — @) <= [b(k),b'(9)] = id(k — @) (14.40)

This requires
filfe — gkge =1 (14.41)

This means that the Bogoliubov transformations are unitary and thus fully
consistent with quantum mechanics!

14.1.1 Particle production

Note how particle production comes about:
b(k,n)|0) = 0 (14.42)

oy = 9 s
b(R)E) =~ (<)) (14.43)

so the number operator is b (k)b(k).
Then: the number of particles in the state |0) is
N = (0]b (k)b(K)|0) (14.44)

Since

O[5 (7) = — & ]p(—F) (14.45)
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we have
N = (0[b' (K)b(k)|0) (14.46)
= :?’f|;<oyb(—/%‘)bT(—E)\6> (14.47)
_gl?
_ |fk|2(1 +..) (14.48)

Thus the ratio |gx|?/|fx|* measures the rate of particle production!! We
will do this more accurately later on.
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Chapter 15

Lecture 15

15.1 QFT in FRW take 1V

So what are the solutions for b(k,n), bf(k,n) ? We could write down the
explicit form of the Heisenberg equations of motion. Recalling

iQ =[Q, H] (15.1)

and solve them; but in fact we ALREADY know the solutions!!!

Recall
b(k,n) = % (\/Ecpg(n) + ﬁﬂ;(n)) (15.2)
. 1 i

0(Fn) = — (Viehtn) = =Pl (15.3)

Py(n) = / (Qi)iﬂp(m T)e k7 (15.4)

_ / %gp’(n, F)e hT (15.5)

= ¢(n) (15.6)

and

r(n) = b(k)yux + b1 (k)uj (15.7)
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where
T
N T
Up = — §7IHJL(’WI)
3|l w-—1
oy O
with v 5 '3w n 1'
Thus B )
Pr(n) = b(k)uj, + b (—k)uy
and so

b, ) = —= (m)(z)uk VR Ryt b

V2 Vi
= % (VE% + ﬁuk) b(k) + % (ﬁu; + ﬁ

We can rewrite this as

where fz(n) =

gz(n) =

1
V2 Vk
1 1
— (Vkur + —u’*)
V2 ( CVE "
Note: In the asymptotic limit |n| — oo,
1 )
e = sre
1 )
ut — ezkn
SNGT

SO

1 1 ) 1 ) )
I V2 (\/ie_m i \/ie_m) —e
1 1 . 1, )
I _el n __ ez n — 0
o V2 (\/5 V2

LECTURE 15

(15.8)
(15.9)

(15.10)

(15.17)

(15.18)

(15.19)

(15.20)
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So indeed, as |n| — oo
b(k, 1) — b(k) (15.21)

i.e. Minkowski vacuum!

15.1.1 Bogoliubov rotation

We can rewrite the above relations in matrix form.

bE.m) \ _ [ feln) ggn) ) [ b(R)
( b (—k,n) ) - ( gg(n) fg(n) ) ( b (—F) ) (15.22)
Thus we can we rewrite this, by inversion, as
bk), \ _ (S —ge(m) b(k, n)
( b (—Fk) ) B ( —gz(n)  fz(n) ) < b (—k, 1) ) (15.23)

Now, this is true for any n; so we have an evolution law for b, bf from 1
to n;

(f,gmo) —g,gwo)) b(F, o) :( fz () —g;z(n)) b(k, )
—g%(no)  filmo) bt (=&, o) —gz(m)  fi(n) bt (—k,n)

(15.24)
[ blkn) :( () gg(n) )( f(no) —g;;(no)) b(k, 1m0)
A\ V(=R g fi) )\ —gztm)  fe(m) )\ bl(—k,m)
(15.25)
Thus
b(k,n) \ _ ( uglnmo) vg(n,7m0) b(k, )
(b*(—z%,m)‘(v,z(n,no) ugw,no))(m(_;z,m)) (15.26)
where
up = fe() f7 (o) — gz(m) gz (o) (15.27)
v = g¢() fz(no) — fr(m)gz(mo) (15.28)

and by unitarity
ur, (1, m0)we (1, 1m0) — vi(1, o) vk(n,m0) = 1 (15.29)
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Thus finally we can rewrite z(n) in terms of b(k,no and bf(k,no) rather
than b(k), b (k). We have

—

op = \/% [ug(n,10) + v%(n,m0)] b(K, 170)
1

—

7 [ (1. 10) + vg(n,m0)] O (=, 10) (15.30)

This is an important piece of mathematics!!!

The reason: consider again the space-time picture of inflation:

Reheating

Q

</ Arbitrary ICs

If we choose as the initial state the vacuum annihilated by b(E)

b(k)|0) = 0 (15.31)

we must push the n =const surface to —oo and declare that the state of
the universe was the Minkowski vacuum then — but this is equivalent to the
choice of special initial conditions!!!! This is contrary to the philosophy of
inflation! INSTEAD we say that the initial state was an arbitrary, messy,
non-vaccum state which was dissipated away by inflation! So

1. Start with an arbitrary initial surface
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2. Get inflation to run for O (10) e-folds — it IRONS OUT the universe

removing initial wrinkles. Recall that p ~ w31+®) ~ e=3(1+w)Ht,

3. The subsequent state of the universe is VERY close to the instantaneous
vacuum at that time! So

b(k,n0)]0) = 0 (15.32)

and so |f)> is the approximate state of the universe at the time 7, some
O (10) e-folds after the onset of inflation.

4. From that time on, the future evolution is completely encoded by the
subsequent adiabatic evolution of |0) and the evolution of the quantum
fields ¢5(n).

Fluctuations of fields are produced in the vacuum |0) as dictated by the
standard short distance QFT; but because of cosmic expansion the waves
with A = a/k get stretched out of the horizon and can end up frozen, i.e. the
particles out of which these waves are composed fail to annihilate!

15.1.2 Two-point function

Two-point function d¢, =?. Measure of fluctuations.

065 = |19kl (15.33)
- k3

[|6xl[?6® (k — @) = 2—7T2<¢;g¢;~> (15.34)

Recall that ¢ = ¢/a; thus:

25()(F K t

||| |70 (k — ) = W@OWQ (15.35)

Let the state be [0(1)):
(pren) = (0(m0) e H0(no)) (15.36)

Substituting ¢ and using
b(]g: Wo)bT(Cfﬁo)‘()(Uo» = 5(3)@ - ®16> (15.37)
others|0) = 0 (15.38)
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we get
(prom) = 8O (k — cD luig(n,10) + 0 (1 m0) (15.39)

To get the relevant limit, we are interested in finding d¢; as n — 0, as this
is the portion that SURVIVES long inflation. Assuming de Sitter

= e/t = —— 15.40
a=-e ot ( )
Then

(n) ! (1 Z) — ik (15.41)

Uu = — —— ] e .

k7] ok T
1 i A
up(n) = —= ( 1+ — | ™" 15.42
)= 7 ( kn) (15.42)
So we have
0 i
Ug(n,10) + Vig(1n,10) "= —k—ne‘z’“(”‘”()) (15.43)
So the fluctuations go as
k> Jur(n, o) + vg(n, no) |
0 ’ A 15.44
(0)* = 27T 2 ok (15.44)
g\ 2
H? 0
— 15.4
Hy

L0k = —— 15.46
b6, = 2 (15.46)

Fluctuations of a relativistic field are set by the expansion rate of the
universe! I

Ty = =2 15.47

= o ( )

Hawking temperature of de Sitter space, see [10]. So this is the behaviour of
a relativistic QFT in thermal equilibrium with some (thermal) heat bath.
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Lecture 16

16.1 Gauge invariant perturbation theory

So far we have discussed the evolution of perturbations in a fixed background,
ignoring backreaction! [11]

But: ) )
L YA £ A p— 16.1
R v 9 VR M2 v ( 6 )

p
implies that matter perturbations source the metric perturbations!

»— d+0p=TH — T +6T", (16.2)
= R', = R')+0R", = g — Gu + 09 (16.3)

16.1.1 The problem:

Some perturbations of the metric can be UNDONE with coordinate trans-
formations!!!

f Vs t' =const

127
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How do we measure real, physical perturbations, and distinguish them
from the pure gauge mode (that portion of the perturbation that can be
undone by a coordinate transformation)?

The idea: recall that the coordinate transformations change the metric to

L Oz 0z
guV(@ - guu(x) = gaﬁ(x)% BE (16.4)

We derive the effect of these transformations at the level of linearised theory!!!

Expectation: inflation smoothes out the large wrinkles in the fabric of
space-time, but out of some small wrinkles many survive, as we have seen
from d¢; ~ Hy. So, we expect that they should be described as small pertur-
bations on top of the smooth backgrounds; observations conform this, since
at large scales

)
L0 (16.5)
P
During inflation
¢ = inflaton
9w = background metric
SO =¢o+ 00

_ 0 _
ng - g;w - th

Take ggy to just be flat FRW as we have seen that this is a good approxima-
tion for inflation, after some initial period since the beginning of inflation.

So:
ds* = —dt* + af di* (16.6)
1 [¢2
H2= _—_ |20 16.

3H; Mg (2 +V> (16.7)

. 174
¢+ 3Hyp+—=0 (16.8)

o

and in slow roll, e = 3¢2/2V, n = —pHyp < 1.
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Consider the perturbations then; first rewrite everything in terms of the
conformal time. Then split the perturbation tensor h,,, which is the irre-
ducible representation of the Lorentz group, into irreducible representations
of the rotation group SO(3). The reason is that time-dependence breaks the
symmetry.

ds} = a2( — (1+2¥)dnp” + (1 +29)d7?
+ (b + VX + Vi ViE)da" dz! + 2(V B + Vk)dx’“dn) (16.9)

Here
o U & F B are scalars
e V., X, are vectors

e hy,; is a tensor

hg; is the true dynamical degree of gravity — this is the two graviton po-
larisations!
= hy; propagates on its own!

Vi, X, U, @, E, B: gauge degrees of freedom.
These fields are NON-PROPAGATING. In the absence of sources they can
be gauged away!

During inflation: the source is the perturbation of the field — this means
that to leading order NOTHING sources the two vectors!

Why? Recall that when we write out the equations of motion for the
perturbation they are linear by our assumption:

Lpray = moyqy (16.10)

indicies must coincide by rotational symmetry!
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Because there are no vectors in the matter sector (any vector is getting
rapidly inflated away, because vacuum energy pushes the system towards
ISOTROPY, which breaks a background vector breaks, so the two are in-
consistent). V; and X}, do not get produced significantly during inflation (no
production at the linear order, possible at the quadratic order though: for
example Oxdph*)).

‘ PROBLEM WITH THE ORIGIN OF MAGNETIC FIELDS! ‘

Sp we can separate out, in linear order perturbation theory, the dynamics of
tensor, vector and scalar perturbations.

We will focus on the scalars, they are the distinct prediction of inflation!

So
dsi = a® {—(1 +20)dn* + (1 + 2®)di® + V; V, B dz" dz' + 2V, B da*dn}

Not all of these scalars are independent!

Note: make a gauge transformation

o* — 7 =2F + () g™ V.0, (16.11)
n—17=n+3gn)CQm (16.12)

where Q,, = e™% — plane waves.

.. appropriate wave expansion for spatially flat FRW.

Then

dz* — dz" = d2* + f g"'V,Qpn dn + fr g™V, Vi QA2 (16.13)
dn — dip = dn + g,,Qmdn + g Vi Qy dz* (16.14)

Now ds? = d5?, where

ds* = a® {—(1 4+ 20)d77* + (1 + 2®)dZ* + V,V,Edz"dz’ + 2V, Bdz"dij}
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Write out dfj, dz* explicitly, collect like terms, and keep only to linear order.
Then compare to the original metric coefficents ¥, £/, B and ®: (expanding
U =V,0,, etc)

a//

U=V — g — —Gm (16.15)
a
_ a’
D, =Py — —Gim (16.16)
a
En=FEn—2fn (16.17)
By = By + gm — [, (16.18)

Also consider the effect of the gauge transformations on the matter (infla-
tion) field:

¢ =¢o+09 (16.19)

Then: scalar transformation properties imply

So
36 = 8¢ — [6o(7, T) — ¢, 2)] (16.21)

We can rewrite this as

0 = 00 Qum (16.23)
where, under a gauge transformation
Sbm — 0m = 0Pm — Gom (16.24)
This is the linearised, infinitesimal form of the diffeomorphisms

_ 0x® 0xP
Juv — Guv = gaﬁaﬁajy (1625)

6 — 3(2) = o(a) (16.26)
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We can now construct the gauge invariant variables (drop m and use Hy =
ay/ap) — gauge invariant potentials

O=03— if’aqﬁ (16.27)
%%

N E’

d=d 4 H, (B — 3) (16.28)

@:Q+HO(B—%)+B’—% (16.29)

Now we can pick a different gauge and work in it or we can just take general
setup and once we get linearised equations of motion, re-express them in
terms of the gauge invariant variables.

The latter approach is way too complicated, and not necessary. Just pick
a gauge, work out the equations and identify the variables with (a linear
combination of) gauge potentials.

Convenient gauge: LONGITUDINAL
E=B=0 (16.30)

Starting with some general coordinates, pick gauge transformations according
to (16.11) and (16.12):

o* — 7 =2F + () g™ V.0,

n—n=n+9nQn

such that

E/
: and g = 5 B (16.31)

Sl

f=

This then guarantees that £ = B = 0.

Ok, so then just drop the overbars, assuming that we started with these
coordinates to begin with. In this gauge

A

U =0 (16.32)
b= (16.33)



16.1. GAUGE INVARIANT PERTURBATION THEORY 133

SO
ds? = a? {—(1 +20)dn? + (1 + 2&))de} (16.34)

where U and & are exactly gauge invariant variables — the equations will
automatically be gauge invariant!
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Chapter 17

Lecture 17

17.1 Gauge invariant scalar perturbations

After we have identified the gauge invariant potentials, we can proceed with
getting the linearised perturbation equations for them.

We start with the field equations, where the stress-energy is set up by the
inflation field:

1 1 1
R;w - aguuR - ﬁg (a,@auﬁﬁ - aguy(agb)Q - g;tyv(¢)) (171)
Vip= ov (17.2)

9¢

The equations for the FRW flat background dominated by the scalar zero
mode in the slow roll regime are

1 ((p)°
ov
o+ 2Hody +ag—— =0 (17.4)
Do
and the perturbations are
ds® = aj (—(1 4 20)dnp* + (1 + 2®)d7?) (17.5)
¢ = ¢o + 0¢ (17.6)

135
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So now the perturbations are (slightly!) simpler to compute if we rewrite
the Einstein’s equations by tracing using R = —T/Mﬁ as

Ry, = Mig (T,W - %gwt) (17.7)
e, Ry, — M%pﬂy (17.8)

Thus 1
OR,, = @6@” (17.9)

Now, in terms of h,,

1 1

1 1
5Ru1/ = év)\vyhu)\ + §V>\VthA - QVQhW - §Vuv,,h (1710)

Now a systematic calculation shows, using also perturbations of 7,,:

0-0 equation :

1 / av
VU = 30" + 3Hy(®' — ¥') + A (2¢05¢ - aOa%&b —2a QV\I!) (17.11)

0-k equation :
1
' = HyU — —— 17.12
Ho SIVE b0 (17.12)
k-1 equation :

OpOh(® + W) + 5kl{v O — O — 5H® + HoW' + 2H2(W — &) + 220 (¥ — )

1 oV
M2 (QaOVOCD + %8750(%) } (17.13)
¢ equation :

82
7 -0 = 2U (¢ + 2Hog)) + (V' — 30") ¢,

50" + 2Hobd — V20 + a2 = 5

Now perform the spatial Fourier transform

f= filn)e® (17.14)
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So consider the k- equation, it is of the form

—MEkgk; + 0N =0 (17.15)
Take the trace: e
4N = Mk* — N = 1 (17.16)
Thus
k2
must be valid for all momenta; contract with k;:
2 1 3012
0= Mk kk—zkk :ZMk k. (17.18)
= M=N=0 (17.19)
Hence:
U=—-¢ (17.20)
The remaining field equations are
D" + 3Ho®' + (Hy + 2H*)P + ! pod — aQa—V(Sqﬁ =0 (17.21)
" ’ 2Mz \ " * ¢y '
K20 — 3H — (H) + 210 + —— (oho + 256 ) =0 (17.22
—k*® — 3Hy®" — (H; + 2Hy) +2M3 ¢0¢+@0%¢ =0 (17.22)
1
o’ D+ ——ppdp = 17.2
2
§¢" + 2Hob + aga—z(w + k%0 — 2®a§a—v +4¢p® =0 (17.24)
o Do

Note that (17.23) allows us to solve for ® in terms of ¢ (and, of course, one
arbitrary integration constant).

This looks like a mess; however, one can show that the variable

a0¢6
Ho

© = agdp — ¢ =-70 (17.25)
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where )
7= @%—% (17.26)
0
obeys the differential equation
Z//
"+ k*p — — =0 (17.27)

So ¢ is clearly gauge invariant since it is related to the gauge invariant
potential ©!

Notice ¢ o ad¢p
Naively: ad¢p would have been our Gaussian field theory variable to quantise;
indeed, ignoring mass terms

1
§=—3 /d%\/g(w)2 (17.28)
with ¢ = ¢g + d¢.
(V¢)? = (Vo) + 2V Vg + (Vig)® (17.29)
The terms o< ¢g drop out by the background equations of motion, leaving
1
S=—3 / d'x\/9(Vip)? (17.30)
So: with ¢ = ad¢ we would rewrite the theory as
1 9 . a//
S == / dnd®z (@’ — (Vp)* + —0g02) (17.31)
2 Qg
Note that
a0l "
Z// "
z_| ”°,) R () (17.32)
Z a;){ﬂ Qo N——
0

slow roll parameters!

So, in fact we find

1 R Z//
S = 5 /dndgf (90'2 — (Vp)? + 7902> (17.33)

because of the back-reaction.
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apd¢: not gauge invariant!
But gauge variations are fixed by the term —%Cbl
So now we can, and know how to, quantise !

But what is the measure of the density fluctuations induced by the fluctu-
ations of p? Consider the longitudinal gauge metric

ds® = ap {—(1 — 2®)dn* + (1 + 2®)d*} (17.34)
The 3D geometry at some 1 =const is
g3 = aj(1 + 2®)da? (17.35)

So the 3D metric has been perturbed by ® which arose in response to d¢; we
can indeed show that
1 ¢ (e
= -z 17.36
2M2 Hok? <Z ) ( )

The perturbation of the 3D curvature can be computed straightfowardly;
the intrinsic curvature at some 7 =const of the unperturbed geometry is zero.
The perturbation induces spatial dependence, since

D o eiF (17.37)
Writing
ds: = Q*d7? (17.38)
where
0% = aj(1+20) (17.39)
we have (see Wald, appendix D)
]_ — —
Ry =R = -1 <4v2 nQ+2(Vin 9)2) (17.40)
and so to linear order in ®
4 - 4k?
R=—-=Vo=— (17.41)
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However: in the longitudinal gauge, once we have perturbed the curvature
we have ALSO perturbed the density!

So we have BOTH 0R3 and dp, the total scalar perturbation is a combi-
nation of these two!

= 7 =const

In the longitudinal gauge it is easy to compute field equations, but hard to
identify their physical effects!

Instead: change the gauge to the isodensity gauge, where the 1 =const
slices are deformed such that p remains unperturbed!

p(n,x) = p(n +6n) + 6p (17.42)
=p+pon+op=p+dp (17.43)

Requiring that dp = 0 yields p'd0n = dp or, therefore

on = 5—[/) (17.44)
P
Now, in the slow roll regime,
p=V (17.45)
5p = 8¢V 6¢, ,0/ = 8¢V gbg (1746)
)
e _g? (17.47)
¢
and so 5
n=mn= —g,b (17.48)
0
Thus
0
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Thus, in this gauge we find

d=0— Hé—ﬁb (17.50)
0
U =—¢— (5—?> — Hoé—? (17.51)
0 0
B= 5_? (17.52)
0
SO
_ 0¢ 09 V0o
ds* = ag{ (1 — 20 -2 (%) — 27—{0%) dn? +2 o daz® dn
0
+ (1 420 — 2H, %) } (17.53)
Note: & = O!

In this gauge, the curvature perturbation of the n =const surfaces is now
R=— (17.54)

The density contrast is 6p/p = R/R4, and using Ry = 12H?,

OR kK .
— = 17.55
R 3H2d3 ( )
or, in terms of the canonically normalised scalar field 6= —p/Z
R k?
- Ld (17.56)

R 3H22Z

The conventional lore expresses the density contrast in terms of the power
spectrum

P(k)5®) (k- §) = 27T2<@ @T) (17.57)
so then, since z = % = %
INS3) (1 _ Ko Hp\ 90,38017
PEIE -0 =5 (20) (25 (17.58)
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Thus 9
5) 125
®o a

- () ()

So the scalar density perturbations are defined by

P(k) = (

or

op 1 Hj
p2m gy

(17.59)

(17.60)

(17.61)

We are now ready to apply this to various models of inflation and subject

them to observational tests.
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Lecture 18

18.1 Towards models of inflation

Thus: during inflation, to leading order, the cosmological dynamics can be
approximated by the inflaton zero mode dynamics in a spatially flat FRW
background:

ds* = —dt* + a*d7® (18.1)
1 [ ¢?
3H? = P (3 + v) (18.2)
p
. 174
¢+3H¢+% =0 (18.3)

The leading contribution of the inhomogeneous modes in the production
of the inhomogeneous curvature perturbations, characterised by the inhomo-
geneous imprint in the background geometry, given by

H o
O = d — —25¢ o const x ¢*7 (18.4)

0

and the surviving r.m.s. curvature perturbation amplitude

(18.5)

P _%Q.bo _QW%

143
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In general the inflationary regime occurs when the dynamics obey slow roll
conditions

_ 3¢
€= W“<< 1 (18.6)
n = _Higz'ﬁ <1 (18.7)

We can recast these conditions as the requirements which the inflaton
potential V' (¢) must satisfy. Indeed, consider the field equations and assume
that €, n < 1; find the slow roll solutions and then check their consistency
with the slow roll requirements iteratively.

In the slow roll regime, n,e < 1:

1%
3H? = 72 (18.8)
. OV
H R 18.
3Ho + 9 0 (18.9)
Thus
1 |V
H_ﬁp 5 (18.10)
and from ¢ = —0,V/3H:
: M, oV
=— — 18.11
v s ey
Thus
. oV 2
(300 _3 M ovy?_ oz (%) (18.12)
2V 23V \dp) 2 V2 '
=2 - ¢ _3 (18.13)

_Hé_L\/zMPQ_V_B_V
My 3 V3V 99 o¢
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But we can rewrite q§ as follows

. M, 9*V M, (av>2 :
=— + — 18.14
v=~vor’t am\as) ¢ (1814
M2 2 3
_Mpyovov. M, (OV (18.15)
2V 8¢ 8¢ 6V2 \ 9¢
M2 2 2
_Myov (oV. M, (0V (18.16)
2V 8¢ \ 992 6V2 \ ¢
Therefore
M2 (62v 1 [0V
- _r - _ - [
=y <a¢2 2V <a¢> (18.17)
Finally
2
Mz (%)
e:TP 2 <1 (18.18)
M3 0*V
__prZ " _
n= 90? ek 1 (18.19)

Thus, the conditions an inflationary potential must satisfy to admit a slow
roll regime are

vl V2
£ < M,V (18.20)
and ,
5 2A VA Ve 1 [0V
5 <an v (3) (18.21)
1.e.
oV V2
o < ﬁpv (18.22)
oA VA Ve

For many potentials the condition (18.23) is more constraining.
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Recall that since

m® 5 Ay

V(9) = 5-¢"+ 76"+ (18.24)
where we have cancelled by hand Vj, = V/(0) since we want to prevent a
large cosmological constant in the minimum of the potential, which we con-
veniently choose to be at ¢ = 0, we see that
— =m (18.25)
00 | 4—g

During inflation V/ Mg = 3H? and so we find that we must have

m? < H? (18.26)
to be in the slow roll regime. In other words, in order to admit slow roll
inflation the potential MUST be sufficiently flat!

Inflation terminates when either of the slow roll parameters become of
order unity; then either the field acceleration ¢ or the kinetic energy P?

become too large to ignore

18.1.1 Density fluctuations

The density fluctuations which are produced are
o 1 H?

o 27 (18.27)
27 ¢

p

Using the slow roll conditions and resorting to the slow roll equations to

rewrite those we get
op 1 ﬁ 1 V32 (18.28)
o 97 My 9V aANBA '
P T Aves REINGITE 96
Thus y
) 1 V32
P _ 5 I (18.29)
P P 96
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at ~ 50 e-folds before the end of inflation this must be about 2 x 107° in
order to match the COBE normalisation conditions.

op

Ll ~2x107° (18.30)
P 150
observational input!
Note what happens with scales:
V =3H*M; (18.31)
= V3% = V2TH* M} (18.32)
and
op 27 H3
— =\ == 18.33)
v (
P 1272 2

A natural normalisation scale is M,:
) 27 (H/M,)®
op _ | 2T (H/My) (18.34)
P 1272 (g—‘g)
M3

Although (H/M,)* < 1 (actually < 107'7), during inflation we have g—g/]\/lj <
1 also, lifting the ratio dp/p towards 107°!

Indeed
ov V
— = V2e— = V2e3H*M, 18.
9 eMp €3 » (18.35)
op 1 H
So—= 18.36
P 2V/2m\eM, ( )

so H/M, <1075, but this gets amplified by /e < 1!

Now if V3/2 / g—g were exactly constant, dp/p would have been independent
of time, and therefore of the momentum £ of the perturbation.
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Recall: the amplitude of the perturbation is set by its value at the horizon
exit, which is set by
k* = i H?a? (18.37)
so when we solve for ¢, H as functions of ¢ we find 5—5(15). We can eliminate ¢
for k using the horizon exit condition k£ = aH. Generally during exponential
inflation this gives

k = Hage™ (18.38)
and so L
1
Thus
dp (5p ) k
—(k) = —(ky) | In — 18.40
2k = (k) )i (18.40)

Since dp/p is nearly constant the dependence on In % is VERY weak and
so we expect it to obey

o _ (5—’)) (Ink)“z" (18.41)
p 0/,

where ny is the spectral indez, given by

1 2d o 5_5 18.42
T S Ik (18.42)
Observationally

ns=1=+0.1 (conservative) (18.43)

Very nearly scale invariant — inflation was reasonably closely approximated
by de Sitter.

During inflation, the tensor modes o hy; are also produced — these are
the primordial gravity waves. They contribute to dp/p also, although their
amplitude is smaller by a power of /e due to the details of dynamics.
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With hkl ~ hEkl we have

op|  (h)  \/{0lhuhi0) (18.44)
Pl My M, '
H )
SETR Ve ?'0 (18.45)
p 5
i.e. we have
(%],)
€= : T (18.46)
dp
( P s)
up to integration constants.
On the other hand, the spectral index ng is
Nng — 1 dIn op
> = dink (18.47)
From t = 1/Hln£ and 5—5 ~ %
no—1 Al g e 1818
2 T d(Ht) H2Hdt\ § '

: oV

_ %d_ li%} N (18.49)
H3dt | 3¢ M2 3SMZ2H

K ()

ST T ) AN — (18.50)

VML,)\/g LN

Plr
— (18.51)
5p
( P s)
Inflationary consistency condition! Arises because in the slow roll regime we

have fewer integration parameters and so observables are mutually related
— a useful check of inflation onces tensors are observed!

Thus:

ne=14+c
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Chapter 19
Lecture 19
()

Future boundary
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ds* = —dt* + a*d7® (19.1)

B = past-oriented lightcone: Rp ~ HLO!
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Chapter 20

Lecture 20

20.1 Desperately seeking the inflaton

Who is the inflaton?
To date many models have been developed. We will consider a number of
them. In chronological order, they are

1. Old inflation

New inflation

Chaotic inflation
Modular inflation
Power law inflation
Hybrid inflation
Extended inflation
Super-extended inflation

R+ R? inflation

We will cover a number of models, focussing on

© 0 N e otk N

e Inflationary dynamics
e Generation of perturbations

e ending inflation and reheating
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20.2 Old inflation

(Reference for this section: Guth [17])

Idea: consider a scalar field with

1
L= =500 - V(o) (20.1)
where V(¢) is some potential with spontanous symmetry breaking:
Ay 15,
V(9) = 70 — 3HPP + Vi (202)

Fine-tune Vj such that the potential at the minimum is zero. Easiest to do
by completing the square:

Vie)=7 (¢2 - Mx) (20.3)

which show the minima are at ¢ = +p/v/A and Vy = p*/4A.
V

Now: assume that the universe is at some temperature 7', in equilibrium and
that ¢ couples to the thermal bath of particles.

Then there will arise temperature corrections to the potential, coming from
the interactions with the background:

+ + Q +o0060
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The 1-loop connected potential is

Vr(¢) =V(¢) + L /Oo dk k* In [1 — exp (—%)] (20.4)

272

Evaluating mj = 9°V/0$* at the minimum and assuming that 7' > m3, by
expanding the integrand in powers of (m,/T)? we find

1 0°V A 1
= ——— T+ =T%¢* — —n°T"! 20.
V(o) V(¢)+24a¢2 +g T =™ (20.5)
_A 4 1 A 2 2 2 1 22 1 24
—4¢ +2(4T u)¢ +W 24,uT 907TT + Vo (20.6)

So the effective mass at non-zero temperature is, around ¢ = 0 is

A
Mg, =31 =1 (20.7)

Temperature effects change the structure of the potentiall

\Y

Finding the critical temperature:

(20.8)
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In the case of theories with spontaneously broken local gauge symmetries
the situation may be more complicated because there may have been addi-
tional phase transitions [8].

Idea for inflation: at 7" > my, the symmetry is restored. By dynamics,
assuming my > H, (which is consistent while 7" < M,)
T2
T>mg>H~— (20.9)
Mp

the field ¢ is trapped at ¢ = 0. This is the minimum of the potential at high
T.

Then the universe cools. When

T~V (20.10)

,LL4 1/4
T~ (K 20.11
(A) (20.11)

the potential V(¢ = 0) = Vj starts to dominate. Inflation begins, while the
field is still trapped at ¢ = 0.

or, in other words,

More general than ¢*

The universe eventually expands unimpeded until 7" drops below the critical
temperature 7, where the symmetry is broken.

Further cooling by expansion brings the universe into the “supercooled”
state. The field now sits in the false vacuum:

\
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The field can now tunnel through the barrier from the false minimum at
¢ =0 to the true minimum ¢ i,*

In regions of space where this happens inflation ceases and the vacuum
energy decays into particles, releasing energy.

However, the problem with old inflation is that it never ends properly! (The
real problem is not that it does not end, but that the size of the “bubbles”
it creates are not big enough for the observed universe).

The regions of space where the tunnelling completed look like bubbles of
Minkowski space enveloped in the de Sitter space environment. In the de
Sitter space environment the field is still stuck in the “false minimum?”.

The bubbles expand at the speed of light — but the environment is STILL
growing exponentially quickly!

So the interspatial distance between two typical adjacent bubbles grows —
they never meet and connect!

So the regions at the Minkowski space inside the bubbles never grow big
enough to be the size of our current universe!

In the old inflation scenario inflation never completes properly and so the
resulting universe is a big de Sitter space, rapidly inflating which happens to

'Damien: A nice pair of papers on the rate of vacuum decay are from Coleman [7].
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be sparsely populated by small islands of FRW universes, separated by large
domain walls.

= Very inhomogenous final state?
GRACEFUL EXIT PROBLEM!

In order to have a chance for succeeding, inflation must terminate grace-
fully, producing only desirable relics instead of domain walls and other beasts.

This was an interesting, educational failure.

2Damien: I think this is a problem only because the final state is inhomogenous and
too small. T do not think we care if the universe is inhomogenous, provided that it occurs

outside our causal patch.
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Lecture 21

21.1 New inflation

(References for this section are Albrecht & Steinhardt [18] and Linde [19])

Consider again the effective potential for a scalar field ¢:

2

A 2
V(g)=7 (¢2 - MX) + V1 loop (21.1)

A B 1 [ d'% [ m?
V1 loop = 5@52 + Z¢4 + 5 / 27 Iny/1+ 7z (21.2)

where A, B are mass and coupling counterterms regulating divergences in

HONN- O .

and [ = sum of zero-point energies.

where

One can determine A and B by imposing the renormalisation conditions

o
0t

0*V

3|,

¢=0

= 6A (21.3)

=M

corresponding to a choice of subtraction scheme.
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This then fixes the potential to be

A 4 2 25 4
A m ( m )+u

s -5 (21.4)

Vig) = 4¢4 * 6an? 4N

Here m is the bare mass of a particle in the loop and M is th erenormalisation
scale.

When m? = 3An?, this is precisely the Coleman-Weinberg potential with
radiatively induced symmetry breaking.

So: consider a potential of the form

Ny 9. §

such that V(¢y;,) = 0. Below we show the potential with temperature
corrections included:

Example of slow-roll inflation!

1. At high temperatures, the field has mass m ~ T > T?/M, = H so it
is quickly trapped in the minimum ¢ = 0.

2. As the universe cools, T* < Vj and inflation begins

3. The field wants to do to the minimum but it has ways to go since it
finds itself on top of a very flat plateau.
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The width of the plateau controls the duration of inflation. We have

0*V 9 9
i m(¢p)° ~ constant < H (21.6)
so in the slow roll regime:
. .0V
reduces to )
. m
O~ —3—H¢ (21.8)

and so ¢ = ¢ exp(g’””—;At). Note these approximations break down after about
1 or 2 e-folds, i.e. after a time

3H
During this regime,
a =t (21.10)

so since H At > 70, and field moves away from the slow roll regime. Given
the amount of time we can trust this solution, we require that

H2
3m—2 > 170 (21.11)

This is the cost we must pay to have sufficient inflation; m? = %27‘2/

2
A

57 S 7 (21.12)

Measure of the flatness of the potential!
We can now calculate the density perturbation:

H
L P 21.13
p ¢¢ 27d (21.13)
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In the slow roll regime,

, V

- 3M2
so_1ov
3H 0¢
So
op  L3H® 1 VP
p 2w B8 2/3r M3

The potential is approximately
m? A

V=Vi+ —¢?— —p*

0T 5 ¢ 4¢

LECTURE 21

(21.14)

(21.15)

(21.16)

(21.17)

| D— /
/
/
/
¢
Now from
3Hp = Ag (21.18)
and H ~ constant,
¢ A 1/1
LA S 21.19
&~ 3 2\ @ 2o
SO
11 2A (21.20)
P @ 3H |
and hence, ignoring 1/¢3,
3H
2, S 21.21
¢ 2At ( )
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Then V' ~ A¢? and so

éop 3 H3 3 H? (21.22)
T o AR 3/2 :
p 2mAo 2rA (%)

But: t can be determined from the horizon crossing condition:

1 k
A:%:Ejem:ﬁ (21.23)
SO 1 &
So:
op 1 [2A H?3 (21.25)
P Ve —\3/2 :
p TV 3 (HQ(ln %) 1)
le 3/2
) 21 k
?’0 = \/;;\/K (m ﬁ> (21.26)
. So for a typical galaxy
k
In 7 ~ 100 (21.27)
SO 5
?'0 ~ O (100) VA (21.28)

For SU(5) grand unified theories A ~ 1 — dp/p > 107°1!!
Even if you made an inflation model with A ~ 107! so that dp/p came
out correctly for the galaxies, at short scales dp/p ~ 1 again, and we create

too many primordial black holes [?]!

More concretely, we can see from that the spectrum is not scale invariant.
Recall the definition of the scaling index

op E\ 2
LAY (m E) . (21.29)

New inflation predicts that n, = 2, while CMB data gives us ng =1+ 0.1.
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MORAL: If you have a new inflationary model, check dp/p first. It is much
harder to get right than the slow roll conditions, and is the thing that kills
most inflationary models.



Chapter 22

Lecture 22

22.1 Chaotic inflation

(References for this section are works by Linde [20])

How it “works”

We have now seen two examples of inflation, and they both failed for different
reasons. Chaotic inflation fixes these problems, but does so in a slightly
awkward way.

e No quantum potential
Chaotic inflation does not try and justify the form of V' (¢) from some
high energy theory. A (pseudo-)justification for this is that we do not
understand the dark sector properly, so who is to say that we cannot
have these forms of potentials. Ultimately, it is a bottom up approach.

e We need inflation already. More precisely, for chaotic inflation to work
we need something that looks like de-Sitter space in the first place.
Chaotic inflation tells us how we can get a lot of inflation out of a mild
amount to start with.

With these caveats in mind, we start to look at chaotic inflation
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22.1.1 The model

A very clever observation: consider any polynomial potential

)\7’1
V=" (22.1)

For a potential with large A and small ¢:

In the limit A — 0, while holding the initial value of V' fixed we get

~— _—

To do this, we need ¢ = (nV/A)Y/™ which gets large as A decreases.

How does ¢ get this large? Remember the inflationary freezeout. Assume
0?V/0¢* < H* — relativistic field.

1 A 2 o

A< I o= - cos(kn + 0)e*? (22.2)
1 AT

> ¢:(A+E>e (22.3)

Inside the Hubble patch: A > 1/H DO NOT fluctuate in time (and spatial
variation is negligable compared to the Hubble scale). Namely, once they
are pushed out of the horizon, the fluctuations freeze and are practically
indistinguishable from the zero mode at short times and scales.

So the zero mode effectively builds up in some region of space!
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Indeed, RMS value of d¢y, is
0, = —! (22.4)
Fluctuations can add up!

So the average deviation of the field can be defined by the square root of
the 2-point function

oI = (6(2)6(2) (225)
- [ i (226)

where |
dr(n) = a\}ﬁ (1 - kin) ek (22.7)

0 = [ () @ = ) 5 () 7
(22.8)
Hence

ol = s [ S (1 ) (229)

(Slightly different normalisation than in Linde’s book)

Interpreting these terms is a lot easier if we look at the integral in physical
momenta space. We really want to do the integral at with limits at fixed
physical momenta, because otherwise we are saying that the physical scale
that our effective field theory (EFT) breaks down is time dependent. We
have

k
p=—=—Hnk (22.10)
a
and hence, for fixed times
dBp Bk
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Let us use (22.10) to eliminate 7 for p, then change the integration to physical

momentum space
H? [k [ p? 1
2 _
loll” = 2n)? /ﬁ (HW + ﬁ) (22.12)
1 &Pk (p?  H?
= @) /F (5 + 7) (22.13)
1

= @y /% (%2 + H;) (22.14)

Now:
e The first term o< p?/2 is the usual zero-point energy contributions

e Renormalise to zero! Otherwise there would be a divergent contribu-
tion!

The first term you would get in Minkowski space — the second term is what

is different in inflation!

Looking at the difference from the flat space value, we have

o2 = 2 /dp— 1 /@ (22.15)

@r) ) 28 202/ p

Pick the limits of integration determined by the beginning of inflation and
the moment of measurement. This gives

H2 H dp
2= — 22.16
oI = 5 [ 3 (22.16)
H2
~ & In et (22.17)
H3¢
So: ||@]] = ¢o(t) grows linearly by the average superposition of fluctuations.

(Not true for arbitrarily late times, can only by pushed up to ~ H*, as after
that the size of the fluctuation is so big that we cannot neglect the effect of
the finite energy of the “heat bath” anymore.)
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In other words: at some regions of initial space, ¢ may be really really big!

Chaotic inflation initial conditions: assume ¢ can be as big as you like as
long as the energy density stored in it does not exceed Planckian value M;}.
The story goes that even if those spots where subdominant to begin with
they will dynamically come to dominate the phase space.

22.1.2 Validity of the EFT

Provided we cutoff when p < M;} we expect GR to be a good EFT for gravity.

¢2
p="5+V(9) (22.19)
Pick for simplicity V' = m?¢?/2 and consider the parameter Q = p/M,}.

Region where EFT is valid is given by 2 <1, i.e.

q'bQ m2 ¢2
<1 99.20
oM oM S (22.20)
Ellipse!
EFT not valid ¢

EFT valid

ICs tuned, inflation sector not

m <K< M,, this direction is long

1Cs irrelevant, need to set up inflation
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A note on attractors

A couple of things that we should note about the ellipse. First of all, the
ellipse contains all points where we can trust GR (and the evolution of the
inflaton) as an EFT. Not all places describe “good evolution”, such as any
point on the ellipse with ¢ > 0 and ¢ > 0. This would correspond to a “ball
being thrown upward” in mechanical terms, and the evolution of this system
would lead us out of the EFT ellipse.

Restricting our attention to the points that remain in the ellipse, we see
all of them end with ¢ = ¢ = 0. This point is an stable attractor in the
parlance of dynamical systems. Here (or arbitarily close by) is where we live
now.

This is a blessing and a curse. It is a blessing because the final state is
a robust prediction of chaotic inflation. It is a curse because we cannot tell
what our initial conditions where. We could be a very finely tuned universe
that had 1-2 e-folds of inflation (shown in blue), or we could have had an
initial state that had the inflation sector finely tuned but is insensitive to the
matter initial conditions (shown in red).

Back to inflation ...

So: to have a long period of inflation, assume that initially

12
O>1 and V> % = ¢ > My (22.21)
For V = m?¢?/2:
2
=g 22.22
3 zMgd) (22.22)
3H) = —m?¢ (22.23)
SO
m

H=—— 22.24
NG (22.24)

: 2
¢ =—1/=M,m (22.25)

3
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Thus

¢~ Py — \/gMpmt (22.26)

a m 2

- = —— — ¢/ =M,mt 22.27

TS <¢o o, ) (22.27)
solving for a(t) yields

m 2
a = ag exp (\/_67]\/[10 <gz50 - \/;Mpmt>> (22.28)

22.1.3 Slow roll parameters in chaotic inflation

Now ¢ =0, so n = —¢/(H@p) = 0. Checking the € slow roll paramter:

. 2
32 3 2

e=2—2L (22.30)

So as long as ¢ > \/ﬁMp we are in slow roll!

Initially
2 12
m; ~ M (22.31)
SO M
V2M, < ¢ < V2—"M, (22.32)
m

is the region where slow roll inflation can occur!

Let us take ¢y ~ v/2(M,/m)M,. Then inflation ends when ¢y ~ v/2M,,
thus its duration is determined by ¢, where

M 2
V2M, ~ \/iﬁMp — \/;Mth* (22.33)

t, = V3 (% — 1) ~ V3 _ 3 (%)2152 (22.34)

1.e.

m \m m2 m b
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The total number of e-folds then is

— m Mym
N=——|¢ot, — —2 ti) 22.35
\/éMp (¢0 \/6 ( )
2
SN = 2—7;’2 + ... (22.36)

If m < M,, N > 1l

Finally let N be the number of e-folds before the end of inflation

N=N-N (22.37)
=N-In (ﬁ) (22.38)
Qo
Simple algebra then shows that
1/ o)
=-| = 22.
v=i( M,,) (22.39)

Then density contrast is

9 m2¢2
) H >
o2 (22.40)
P 2m¢ QW\/gMpm
1 me? 1 m
= = — 22.41
4671 MS’ 4/ 61 M, ( )
SO
)
P ~ iﬁ (22.42)
P Vor M,

To get dp/p ~ 1075 about 60 e-folds before the end of inflation for galaxy
formation. Using N'/v/67 ~ O (10), we need

m ~ 107°M, ~ 10" GeV (22.43)

Then

1 (M)
N == (—p) ~ 10" GeV! (22.44)
2\ m
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Spectral index

e =1+2—L (22.45)
dln®  dN  kdN

= = — 22.46
dlnk dlnk N dk ( )
But by the horizon crossing matching conditions
a 1 NN
Awavelength == 75" k= Ha= Hape (22.47)
We also have
v dk S
W = —k and so: @ = _E (2248)
This implies
2
ng=1-— N (22.49)

Thus about 60 e-folds before the end of infaltion, ny, = 0.967, This is scale
invariant (same as WMAP 3 + errors!!!!)

Note: 2
1
=2 P~ 22.50
T TN (22.50)

So at N ~ 60 before the end of inflation (relevant for galaxies) we have

« = <1 (22.51)
=120 '

= deep in the slow roll regime.

As inflation ends, ¢ start to slosh around the minimum. Then m > ¢
since ¢ < M, and so the only influence of the cosmological term H is to
account for the redshift due to expansion. We can that

M
¢ ~ &3—/1”2 cos(mt + 9) (22.52)

This oscillating scalar field produces particles, eg. by couplings like

L3 go) (22.53)
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to reheating! We can describes where reheating is very efficient , leading
to the transfer of energy from ¢ to radiation in a few Hubble times, and
reheating the universe to a temperature (see [12])

T, ~+/H.M, (22.54)
small \ in the future

Reheating surface

There could also be tensor fluctuations; recall that

) o
(—p) ~ Ve (_;;) ~ 107 for m2¢* (22.55)
PJ)r P /s

— Maybe visible to Planck!

A problem: radiative stability!

—>A2¢2

¢ ¢
A cutoff; so if A ~ M,, we need m, < M, — fine-tuning!

SUSY? But SUSY is broken in the early universe by the cosmological
expansion itself! The natural cutoff is H, so the scalars like to aquire a mass

m~ O (H) (22.56)
This would spoil slow-roll and ruin inflation. But, there may be symmetries

we can use to protect scalar masses from radiative corrections.
axions, moduli, ...
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Finally, the whole story works for an arbitrary potential

A
V=2
n
n/2
=20
3n M,
; /n)\ n_
Qb: - ?Mpgbg !

_ -N
@ = Qfinal€

YIRS
N—%(ﬁ)

slow roll

Density contrast and tilt

5p A gt
? /3032 M3
nsg=1-— nt2
° 2N
Slow roll parameters:
n(n —2) M; n® M;
=T e Taa

177

(22.57)

(22.58)

(22.59)

(22.60)

(22.61)

(22.62)

(22.63)

(22.64)

22.2 Baysian versus frequentist (an aside)

When doing cosmology, often the experiments that we are doing cannot be
repeated in any reasonable fashion. Given the most elementary notion of
probability, which is we consider an infinite ensemble of systems and “prob-
ability of X is interpreted as the fraction of the ensemble that has property
X. If we only get to look at one member of the ensemble (say our universe),

it is not clear that probabilistic statements mean anything at all!

While the above notion of probability is the most elementary (and the one
usually employed in an undergraduate quantum mechanics class to assign
some meaning to |¥|?), it is not the only one. There are two main schools of

thought on what probability means:
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Bayesian The Bayesian approach treats probability as a degree of belief
that something is true. If I am a weatherman, I feel 70% sure it is
going to rain today. If I am the man on the street, I may only feel
40% sure it is going to rain.! The probability is subjective, so both the
weatherman and the man on the street could be “right” — they have
access to different amounts of information and have differing degrees
of confidence that it will rain.

Frequentist This is a fancy name for the ensemble approach. Here, the
probability really does exist — it is some number. In the rain case
above, it is the probability would be very close to 1 or 0 (as the laws of
atmospheric physics are basically deterministic on the time scales of a
day). If we averaged over some initial positions and velocities, we could
do this over entire ensemble and know the true probability that it rains
on days “close” to today is 74%. Not suprisingly, the weatherman was
closer! Note that the “true probability” does not even make sense in
Bayesian statistics.

For one off “experiments”, like the universe, the Bayesian approach may be
the best that we can do.

Note some descriptions are better than others for different things. Think
of the average age of people in Davis — there is a definite answer to the
question. To find the answer, you may take a sample of people. After some
analysis, the frequentist can give tell you “I am 95% sure that the true mean
is contained in (30,44)” while the Bayesian approach would tell you “I believe
that the mean is most likely between (30,44)”.

Granted, these are issues of philosophy and mathematics. However, it is
worth bearing them in mind as they may provide fundamental limitations to
what can be done in cosmology (or at least indicate the reasons why there is
a limited amount we can do).

Degree of belief is hard to define, but usually it is done by betting odds. The probabil-
ity is determined by if the person bet on it, at which odds would they have zero expectation
value.
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Lecture 23

23.1 Some other variants of chaotic inflation

23.1.1 R+R? inflation

(Reference for this section is [22]).

Consider Einstein’s equations and include leading order quantum correc-
tions X )
cl
Guy = T (T;w + <CFIW>> (231)
My
In general

1
(T =a (zvuv,,R — 29, V’R —2RR,, + §gWR2) + b0 (R?)
N—_——
non-local, etc.

Starobinsky’s motivation was to argue that the initial singularity was
avoided because quantum corrections forced the scale factor to “bounce”

from zero!
a P

179
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But, for the bounce to occur @ > 0 = inflation in disguise.

Subsequently Starobinsky realised that his equations of motion can be
derived from an action principle starting with

4 Mz? € n2
However, the equations appear as a 4th order differential equations!
etc. (23.3)

= there are new degrees of freedom in the gravitational sector!

Recall: a degree of freedom is described by x, p or equivalently by 2nd
order differential equations = 2 integration constants xy and py (per degree
of freedom).

When the differential equations is 4th order = 4 integration constants! x,
Do, Yo, Qo — the old degree of freedom plus an extra degree of freedom.

This diagnostic procedure is quite general in fact.

There is quite a nice trick to diagonalise the metric in terms of all the
degrees of freedom in the theory (see Brian Whitt [23]).

Define new metric g, and a new scalar field ¢ such that

€ R
gLV - (1 + 5 ) guy (234)
‘ 3 M2

G R
¢ = \gMp In (1 + 5@) (23.5)
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Then the action can be rewritten

/d‘*xf( ”R——a¢> (&))

_ /d4x det g, exp <—\/g]\%>£ <¢,§W exp <_ gi>>

= Matter is non-minimally coupled directly to d;
= Typical for supergravity theories with extra scalars.

4 = g\ 2
Vo) =3 (1 Vi)

- (23.7)

o
Mp

= a perfectly flat potential for ¢ > M,! — Sounds perfect for chaotic
inflation.

The problem however is that the model needs € > 1 to have V < M?*! But
this means that at large curvatures, eR* > M2 R — reliability?

Recently there were attempts to resurrect this idea in the brane world
scenarios with AdS bulk.

€ ~# at hidden sector field theory degrees of freedom.
Large N CFT — € > 1. See Hawking, Hertog & Reall [15].

23.1.2 Power law inflation

(References for this section [24])
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Suppose that the potential V(¢) is a little steeper; so ¢ cannot be com-
pletely neglected during inflation. Now clearly, whether we have inflation or
not depends on just how steep V(¢) is. In particular, note from

92.52
3H*M? = 5 +V(9) (23.8)
That both H = £ and ¢ partake of V(). So steeper V(¢) means that ¢

“steals” more V(¢) and so universe expands more slowly.

But from
<_v
w=L=2 (23.9)
P4V

we see that we can tolerate ¢ as long as w < —1/3 and stays that way for a
sufficiently long time.

Prototype example: exponential potentials. These are a nice benchmark
for parameterising n, — 1. So let

o
V = %eCMp . (2310)
Then the field equations reduce to
1 2 et
3H? = e (% + Ve M,,> (23.11)
p
. . Vo et
¢+3H¢—|—cﬁoe My = () (23.12)

p

Now, clearly, the qualitative properties of the solution CANNOT depend
on Vy and ¢ separately. Reason: consider ¢ — ¢ + ¢q

V = Vyexp (CMip + cﬁ—i) (23.13)
= Vpexp ci where Vp = Vpexp c@ (23.14)
M,)’ M,

Thus, instead of parameterising the solutions by Vj we can do it by ¢y.
¢ — ¢+ ¢o a pseudosymmetry!
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Now: one can show that this system has a late time attractor iff it is an
accelerating cosmology with @ > 0, or equivalently

a~tP p>1
This works as long as
t p
a=ap (—) (23.15)
to
t
¢ = ¢o + $1 M, 1In (t_) (23.16)
0

Plug into the equations of motion

g=2="7 (23.17)
a t

Py 23.18
¢ - 7 p ( : )

P* P Vo 0Lcs /)
T ot O 219

2 2 co1

p ¢1 13
3 =L — 23.2

"3t2 2t2+y(t0) (23.20)

where v = Vye®/M» /M2 For the equation to hold at all times, we require
C¢1 = -2

Now cancel t72: _
2

3p° = 5+ It (23.21)
Next M
o= —d)th L (23.22)
S0 )
»iM,  3ppi M, Vo et (to)
- + +e—e™M [ — ] =0 (23.23)
2 2 M, t
So, cancelling M, /t*:
2o _ 3 (23.24)
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Eliminate vt from these two equations:

2
ch1=—2—¢1=—— (23.25)
c

o1 1 3pd
Ip? — L =T 23.26
P 2 c c ( )

Eliminate % = —% so then
o) ?Z 3D 5
3p? — 7Z = — = 23.27
p b b + 9 ¢1 ( )
¢7 2
S 23.28
P=5 =3 ( )
Thus
£\ 2
a = ag (—) (23.29)
lo

2 t
¢ =¢o— —M,In (—) (23.30)

C to

and i > 0 (i.e. p;l) when

<2 (23.31)

Note: this is why it is difficult to get inflation from compactifiation of
supergravities; usually one gets ¢ > 6 instead of ¢? < 2!

What is the spectral index?

sp 1 H? P21
S L S (23.32)
P 2T ¢ |1 Myt

where p = 2/c?, |¢1| = 2/c. So

op _ 2 L (23.33)



23.1. SOME OTHER VARIANTS OF CHAOTIC INFLATION 185

a

Horizon crossing condition A = % = -, This implies (as always)

x|

k=aH = k!

SO
op _ (@) LT
p p/
Hence: 5 |
m? = Ikt A
1Y —p
and
dln%p
=142 =1+ —
M= S e T
Thus with p = 2/c?,
2
Ng = — E
or
22
ne=1-—
2 —c?

From ng =14 0.05 we find that p must be pretty large, p >

(23.34)

(23.35)

(23.36)

(23.37)

(23.38)

(23.39)

2 —
o2 +1=141.

So the slow roll condition € = % < 1 must be well satisfied!
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Chapter 24

Lecture 24

24.1 Modular inflation

(A list of references have been collected in the bibliography under [21])

Moduli: flat directions in SUSY models — weakly coupled particles whose
masses all vanish in the SUSY limit.

Good candidates for the inflation = we need to have light scalars whose
masses are small, and remain small even after the quantum corrections are
accounted for. Moduli fields can achieve this because they are protected by
symmetries.

They are generally arising in super-gravity compactifications as fields that
parameterise size and shape of the extra dimensions.

General idea: SUSY breaking (or compactification and stabilisation of the
extra dimension(s)) gives rise to a potential for the modulus ¢, where there
was no potential at higher scales. This is going to be of the form

V =M'O (%) (24.1)

where

e M: symmetry breaking scale. Say M ~ MqyT ~ 10" GeV
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e A: cutoff. Say A ~ M, ~ 10" GeV
e O (x) is some (analytical) dimensionless fuction

= all the scales during inflation are determined by the parameters M and

A.

Note: from the Friedmann equation, if V' admits the slow roll regime

% M*
H*~ — ~ (24.2)
My M
so H ~ M?/M,,.
But: recall that the existence of the slow roll regime requires that
m << H (24.3)

where m? = 9°V/0¢?. Taking A ~ M,, V = M*O (¢/M,) and expanding O
we set (ignoring the linear term)

4
V =M+ c>¢? (24.4)

SO

m~VC— ~VCH (24.5)
Thus, we must have vVC < 1= C < 1.

This is the price we pay: we need a small parameter built into the potential.
Essentially this is always the case for inflation:

1
N~ = — ~ apel/ 24.6
¢ “fina]l ~ o€ ( )

Onto the specifics (see [13]):

Consider the potential to be
2
0O=1- (é) (24.7)
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2N

where inflation takes place. In the slow roll regime, we have

3H? = % (1 - (%)j (24.8)

3H¢ = 2M4% (24.9)
_ (Y
= H = WITa 1 (;> (24.10)
2 2
, 2, ¢ (24.11)

V3IE = (/)

Recall that

e (24.12)
05V
— M* cancels out! So
(0,02 2MJ¢”
=M S =k (24.14)
020  2M?
n=—e+ Mj% - M;’ (24.15)

The condition n < 1 = p? > 2M?.

That is the fine-tuning! note also that for small ¢ < u, € < n. So n is what
controls the validity of the slow roll regime!
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Now, the number of e-folds is

t o) H
N=I (3) - / dtH = [ do— (24.16)
o to %0 ¢
Plugging in the slow roll equations
1 ¢ 9 ¢2)
N~—|In—+ 24.17
U ( o 21 (24.17)

During inflation, ¢ does not change that much, and so the total number
of e-folds is basically controlled by 1. To have N = 70 we need n < 1/70.

Inflation ends when ¢ reaches ¢ ~ p (Note O = 1 — (¢/p)* ~ 0 when
¢ ~ p). We define again

N=N-N (24.18)

as the counter of e-folds before the end of inflation and find

Lo ¢ —p?
=—|In= 24.1
N ; ln ” + o (24.19)
2 2
[y (?) (24.20)
V3M, p
a= aﬁnale_N (24.21)
Then:
A H2 1 M?2 3/2
o _ o (24.22)

p 2 B Qﬁﬂﬁgad,(’)
RHS is a function of ¢, eliminate it in favour of £ using

a 1

Awavelength T H

k=aH (24.23)

This yields k &~ kge™V.
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So
b, Ik [1 . (E)Q"] "
p o 8my/3M3 \ k ko
To set
ol 5x107°
P 150

we need M ~ 8 x 1073M,, — GUT scale!

dln 2 6

U
s=1+2 P —1-92p— ———
T BNCIRE

50 e-folds before the end, n, ~ 0.95.

24.1.1 More general cases

Consider the generalisation of the above:

(’):1—(?)71, n>2
1

Then:
2 n
- 2 )
V3M, Il
PO
)
n
-N
@ = Afinal©
N = ,un (TL — 4)/12
n(n —2)M2¢n=2 = 2n(n — 2)M?
and finally

¥ () 1 () - GO T

191

(24.24)

(24.25)

(24.26)

(24.27)

(24.28)

(24.29)

(24.30)

(24.31)
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Numerically:
ol 5x107°
P 150
= M ~4x107%/n(n - 2)"* M,
or,
H ~ few x 10"y/nvn — 2GeV
But

) H
(—p> ~— <107
p)r M,y
— so tensor fluctuations have not been directly observed yet!

Thus, as an experimental constraint

H <107°M,
ie. H<T7x10%GeV

Therefore, n > 2 has already been ruled out!

LECTURE 24

(24.32)

(24.33)

(24.34)

(24.35)

(24.36)
(24.37)
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