Origin of probabilities and their application to the multiverse

Andreas Albrecht
UC Davis

2015: THE SPACETIME ODYSSEY CONTINUES
Stockholm
June 4, 2015

Origin of probabilities and their application to the multiverse

Andreas Albrecht
UC Davis

2015: THE SPACETIME ODYSSEY CONTINUES
Stockholm
June 4, 2015

AA & D. Phillips (PRD Dec 2014)
Thank you Katie!!!
Origin of probabilities and their application to the multiverse

Andreas Albrecht
UC Davis

2015: THE SPACETIME ODYSSEY CONTINUES
Stockholm
June 4, 2015

AA & D. Phillips (PRD Dec 2014)
Cosmic Inflation:

Consumers & Producers

The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)
Cosmic Inflation:

Consumers & Producers

The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)
Cosmic Inflation:

Consumers & Producers

The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

(Blue Monster by Simon Richards)
Cosmic Inflation:

Consumers & Producers

The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

(Blue Monster by Simon Richards)
Cosmic Inflation:

Consumers & Producers

Eternal Inflation

The multiverse of eternal inflation with multiple classical rolling directions

Classically Rolling A

Classically Rolling B

Classically Rolling C

Classically Rolling D

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc.)

(Blue Monster by Simon Richards)
My history with this topic

AA: All randomness/probabilities are quantum (coin flip, card choice etc)
My history with this topic
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)
Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones).

AA: All randomness/probabilities are quantum (coin flip, card choice etc). Hartle, Srednicki, Aguirre, Tegmark, ...
Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deeper problem than the measure problems for the multiverse
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deeper problem than the measure problems for the multiverse

A potential issue even for finite models
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deep problem than the measure problems for the multiverse

AA: Write paper explaining this with Phillips
Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deep problem than the measure problems for the multiverse

AA: Write paper explaining this with Phillips

AA: This is fundamentally about giving permission to dismiss certain probability questions (the non quantum ones) as “ill posed”.
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deep problem than the measure problems for the multiverse

AA: This is fundamentally about giving permission to dismiss certain probability questions (the non-quantum ones) as "ill posed".

Perhaps this type of discipline can help resolve the measure problems of the multiverse/eternal inflation
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deep problem than the measure problems for the multiverse

AA: Write paper explaining this with Phillips

AA: This is fundamentally about giving permission to dismiss certain probability questions (the non quantum ones) as "ill posed".

Perhaps this type of discipline can help resolve the measure problems of the multiverse/eternal inflation
My history with this topic

Page: Quantum probabilities cannot address key multiverse questions. (OK, just use classical ones)

AA: All randomness/probabilities are quantum (coin flip, card choice etc)

AA: A deep problem than the measure problems for the multiverse

AA: Write paper explaining this with Phillips

AA: This is fundamentally about giving permission to dismiss certain probability questions (the non quantum ones) as "ill posed".

Apparently this type of discipline can help resolve the measure problems of the multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation

NB: Very different subject from “make probabilities precise” in “Stanford sense”.
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Planck Data
--- Cosmic Inflation theory
Slow rolling of inflaton

Observable physics generated here
Slow rolling of inflaton

Observable physics generated here

Extrapolating back
Slow rolling of inflaton

“Self-reproducing regime”
(dominated by quantum fluctuations): Eternal inflation/Multiverse

Observable physics generated here

Extrapolating back

Steinhardt 1982, Linde 1982, Vilenkin 1983, and (then) many others
Slow rolling of inflaton

“Self-reproducing regime” (dominated by quantum fluctuations): Eternal inflation/Multiverse

Observable physics generated here

Alternatively, perhaps something (such as holography) cuts off this extrapolation

Steinhardt 1982, Linde 1982, Vilenkin 1983, and (then) many others
Slow rolling of inflaton

"Self-reproducing regime" (dominated by quantum fluctuations): Eternal inflation/Multiverse

Observable physics generated here

Extrapolating back

Steinhardt 1982, Linde 1982, Vilenkin 1983, and (then) many others
The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)
The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

“Where are we?” ➔ Expect the theory to give you a probability distribution in this space... hopefully with some sharp predictions
The multiverse of eternal inflation with multiple classical rolling directions

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

“Anything that can happen will happen infinitely many times” (A. Guth)

“Where are we?” ➔ Expect the theory to give you a probability distribution in this space... hopefully with some sharp predictions
The multiverse of eternal inflation with multiple classical rolling directions.

String theory landscape even more complicated (e.g. many types of eternal inflation).

"Where are we?" (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

"Anything that can happen will happen infinitely many times" (A. Guth)

Expect the theory to give you a probability distribution in this space... hopefully with some sharp predictions.
The multiverse of eternal inflation with multiple classical rolling directions.

String theory landscape even more complicated (e.g. many types of eternal inflation).

Where are we? (Young universe, old universe, curvature, physical properties A, B, C, D, etc)

“Where are we?” ➔ Expect the theory to give you a probability distribution in this space... hopefully with some sharp predictions.

“Anything that can happen will happen infinitely many times” (A. Guth)
Quantum vs Non-Quantum probabilities

Non-Quantum probabilities in a toy model:

\[U = A \otimes B \]

\[A : \{ |1^A\rangle, |2^A\rangle \} \quad B : \{ |1^B\rangle, |2^B\rangle \} \]

\[U : \{ |11\rangle, |12\rangle, |21\rangle, |22\rangle \} \]

\[|ij\rangle \equiv |i^A\rangle |j^B\rangle \]

Page, 2009; These slides follow AA & Phillips 2014
Quantum vs Non-Quantum probabilities

Non-Quantum probabilities in a toy model:

\[U = A \otimes B \quad A : \{ |1^A, 2^A \} \quad B : \{ |1^B, 2^B \} \]

\[U : \{ |11, 12, 21, 22 \} \quad |ij \rangle \equiv |i^A \rangle |j^B \rangle \]

Possible Measurements \(\leftrightarrow \) Projection operators:

Measure A only: \[\hat{P}_i^A = \left(|i^A \rangle A \langle i | \right) \otimes 1^B = \left[|i1 \rangle \langle i1 | + |i2 \rangle \langle i2 | \right] \]

Measure B only: \[\hat{P}_i^B = \left(|i^B \rangle B \langle i | \right) \otimes 1^A = \left[|1i \rangle \langle 1i | + |2i \rangle \langle 2i | \right] \]

Measure entire \(U \): \[\hat{P}_{ij} = |ij \rangle \langle ij | \]
Quantum vs Non-Quantum probabilities

\[U = A \otimes B \]

Non-Quantum probabilities in a toy model:

Possible Measurements \(\leftrightarrow\) Projection operators:

Measure A only:
\[
\hat{P}_i^A = \left(|i\rangle^A \langle i| \right) \otimes 1^B = \left[|i1\rangle\langle i1| + |i2\rangle\langle i2| \right]
\]

Measure B only:
\[
\hat{P}_i^B = \left(|i\rangle^B \langle i| \right) \otimes 1^A = \left[|1i\rangle\langle 1i| + |2i\rangle\langle 2i| \right]
\]

Measure entire \(U\):
\[
\hat{P}_{ij} = |ij\rangle\langle ij|
\]

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.
Quantum vs Non-Quantum probabilities

Non-Quantum probabilities in a toy model:

\[U = A \otimes B \]

Possible Measurements ↔ Projection operators:

Measure A only: \[\hat{P}_i^A = (|i\rangle^A \langle i|) \otimes 1^B = [|i1\rangle\langle i1| + |i2\rangle\langle i2|] \]

Measure B only: \[\hat{P}_i^B = (|i\rangle^B \langle i|) \otimes 1^A = [|1i\rangle\langle 1i| + |2i\rangle\langle 2i|] \]

Measure entire \(U \): \[\hat{P}_{ij} = |ij\rangle\langle ij| \]

Could Write

\[\hat{P}_i = p_A \hat{P}_i^A + p_B \hat{P}_i^B \]

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.

Albrecht @ Stockholm 6/4/15
Quantum vs Non-Quantum probabilities

\[\hat{P}_i = p_A \hat{P}_A^i + p_B \hat{P}_B^i \]

Non-Quantum probabilities in a toy model:

\[U_A B \]

Possible Measurements \(\leftrightarrow \) Projection operators:

Measure A only:

\[\hat{P}_A^i = (|i\rangle^A \langle i|) \otimes 1^B = [|i1\rangle \langle i1| + |i2\rangle \langle i2|] \]

Measure B only:

\[\hat{P}_B^i = (|i\rangle^B \langle i|) \otimes 1^A = [|1i\rangle \langle 1i| + |2i\rangle \langle 2i|] \]

Measure entire \(U \):

\[\hat{P}_{ij} = |ij\rangle \langle ij| \]

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.
Quantum vs Non-Quantum probabilities

\[\hat{P}_i = p_A \hat{P}^A_i + p_B \hat{P}^B_i \]

\[\hat{P}_i \hat{P}_j \neq \delta_{ij} \hat{P}_j \]

\[\hat{P}^A_i = (|i\rangle^A \langle i|) \otimes 1^B = [|i1\rangle\langle i1| + |i2\rangle\langle i2|] \]

\[\hat{P}^B_i = (|i\rangle^B \langle i|) \otimes 1^A = [|1i\rangle\langle 1i| + |2i\rangle\langle 2i|] \]

Measure entire \(U \): \[\hat{P}_{ij} = |ij\rangle\langle ij| \]

Non-Quantum probabilities in a toy model:

\[U_A \otimes U_B \]

Possible Measurements ⇔ Projection operators:

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.

Albrecht @ Stockholm 6/4/15
Quantum vs Non-Quantum probabilities

\[U = A \otimes B \]

Non-Quantum probabilities in a toy model:

\[\hat{P}_i = p_A \hat{P}_i^A + p_B \hat{P}_i^B \]

\[\hat{P}_i \hat{P}_j \neq \delta_{ij} \hat{P}_j \]

Could Write

\[\hat{P}_i^A = \langle i \rangle^A \]
\[\hat{P}_i^B = \langle i \rangle^B \]

Measure entire \(U \):

\[\hat{P}_{ij} = |ij\rangle \langle ij| \]

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.

Classical Probabilities to measure A, B

Page: The multiverse requires this (are you in pocket universe A or B?)

Does not represent a quantum measurement

Measure entire \(U \):

Albrecht @ Stockholm 6/4/15
Quantum vs Non-Quantum probabilities

\[\hat{P}_i = p_A \hat{P}_i^A + p_B \hat{P}_i^B \]

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.

Could Write

\[\hat{P}_i \hat{P}_j \neq \delta_{ij} \hat{P}_j \]

Possible Measurements ↔

\[\hat{P}_i^A = (|i\rangle^A) \]
\[\hat{P}_i^B = (|i\rangle^B) \]

\[\hat{P}_{ij} = |ij\rangle \langle ij| \]

Does not represent a quantum measurement

Measure entire \(U \):

\[\hat{P}_{ij} = |ij\rangle \langle ij| \]

Non-Quantum probabilities in a toy model:

\[U_A B \]

\{ 1, 2 \}

\{ 1, 2 \}

\{ 11, 12, 21, 22 \}

\(U \)

\(A \)

\(B \)

\(\| j \rangle^B \)

Classical Probabilities to measure \(A, B \)

Page: The multiverse requires this (are you in pocket universe A or B?)

Albrecht @ Stockholm 6/4/15
• All everyday probabilities are quantum probabilities
• All everyday probabilities are quantum probabilities

Our *only* experiences with successful practical applications of probabilities are with quantum probabilities
• All everyday probabilities are quantum probabilities

• One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin
• All everyday probabilities are quantum probabilities

• One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin.
• All everyday probabilities are quantum probabilities

• One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin.

AA & D. Phillips 2014
Quantum vs Non-Quantum probabilities

Non-Quantum probabilities in a toy model:

\[U = A \otimes B \]

Possible Measurements

Measures \(A \) only:

Measures \(B \) only:

Measures entire \(U \):

Could Write

\[\hat{P}_i = p_A \hat{P}_i^A + p_B \hat{P}_i^B \]

\[\hat{P}_i \hat{P}_j \neq \delta_{ij} \hat{P}_j \]

Page: The multiverse requires this (are you in pocket universe A or B?)

Classical Probabilities to measure A, B

BUT: It is impossible to construct a projection operator for the case where you do not know whether it is A or B that is being measured.

Does not represent a quantum measurement.
Quantum vs Non-Quantum probabilities

$U = A \otimes B$

Non-Quantum probabilities in a toy model:

$\hat{P}_i = p_A \hat{P}_i^A + p_B \hat{P}_i^B$

Can write

$\hat{P}_i \hat{P}_j \neq \delta_{ij} \hat{P}_j$

Possible Measurements \leftrightarrow Probabilities

Measure entire U: $\hat{P}_{ij} = |ij\rangle \langle ij|$
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation
Quantum effects in a billiard gas
Quantum effects in a billiard gas

Quantum Uncertainties
Quantum effects in a billiard gas

\[\Delta b = \delta x \perp + \frac{\delta p \perp}{m} \Delta t \]
Quantum effects in a billiard gas

\[\Delta b = \delta x_\perp + \frac{\delta p_\perp}{m} \Delta t = \sqrt{2} \left(a + \frac{\hbar}{2a} \frac{l}{m\bar{v}} \right) \]

\[\psi \propto \exp \left(\frac{-x^2}{2a^2} \right) \]
Quantum effects in a billiard gas

\[\Delta b = \delta x_\perp + \frac{\delta p_\perp}{m} \Delta t = \sqrt{2} \left(a + \frac{\hbar}{2a} \frac{l}{m\overline{v}} \right) \]

\[\psi \propto \exp \left(\frac{-x^2}{2a^2} \right) \]

\[\min \rightarrow 2^{3/2} \left(\frac{\hbar l}{2m\overline{v}} \right) \equiv \sqrt{\frac{l}{\hbar dB}} / 2 \]
Quantum effects in a billiard gas

\[\Delta b = \delta x_1 \]

Minimizing \(\Rightarrow \) conservative estimates for my purposes (also motivated by decoherence in some cases)
Quantum effects in a billiard gas

Subsequent collisions amplify the initial uncertainty (treat later collisions classically ➔ additional conservatism)
Quantum effects in a billiard gas

After n collisions:

\[\Delta b_n = \Delta b \left(1 + \frac{2l}{r}\right)^n \]
Quantum effects in a billiard gas

\(n_Q \) is the number of collisions so that

\[
\Delta b_{n_Q} = r
\]

(full quantum uncertainty as to which is the next collision)

\[
n_Q = - \frac{\log \left(\frac{\Delta b}{r} \right)}{\log \left(1 + \frac{2l}{r} \right)}
\]
\(n_Q \) for a number of physical systems

(All units MKS)

<table>
<thead>
<tr>
<th></th>
<th>(r)</th>
<th>(l)</th>
<th>(m)</th>
<th>(\bar{v})</th>
<th>(\mathcal{A}_{dB})</th>
<th>(\Delta b)</th>
<th>(n_Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billiards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumper Car</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
n_Q for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>l</th>
<th>m</th>
<th>\bar{v}</th>
<th>\mathcal{X}_{dB}</th>
<th>Δb</th>
<th>n_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billiards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>0.5</td>
<td>1.4×10^{-36}</td>
<td>3.4×10^{-18}</td>
<td>25</td>
</tr>
</tbody>
</table>
n_Q for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>l</th>
<th>m</th>
<th>\bar{v}</th>
<th>\mathcal{A}_{dB}</th>
<th>Δb</th>
<th>n_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billiards</td>
<td>0.029</td>
<td>1</td>
<td>0.16</td>
<td>1</td>
<td>6.6×10^{-34}</td>
<td>5.1×10^{-17}</td>
<td>8</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>0.5</td>
<td>1.4×10^{-36}</td>
<td>3.4×10^{-18}</td>
<td>25</td>
</tr>
</tbody>
</table>

Albrecht @ Stockholm 6/4/15
n_Q for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>l</th>
<th>m</th>
<th>\bar{v}</th>
<th>\mathcal{F}_{dB}</th>
<th>Δb</th>
<th>n_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>3.0×10^{-10}</td>
<td>5.4×10^{-10}</td>
<td>3×10^{-26}</td>
<td>460</td>
<td>7.6×10^{-12}</td>
<td>1.3×10^{-10}</td>
<td>0.6</td>
</tr>
<tr>
<td>Billiards</td>
<td>0.029</td>
<td>1</td>
<td>0.16</td>
<td>1</td>
<td>6.6×10^{-34}</td>
<td>5.1×10^{-17}</td>
<td>8</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>0.5</td>
<td>1.4×10^{-36}</td>
<td>3.4×10^{-18}</td>
<td>25</td>
</tr>
</tbody>
</table>
\(n_Q \) for a number of physical systems

<table>
<thead>
<tr>
<th></th>
<th>(r)</th>
<th>(l)</th>
<th>(m)</th>
<th>(\bar{v})</th>
<th>(\mathcal{A}_{dB})</th>
<th>(\Delta b)</th>
<th>(n_Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>(1.6 \times 10^{-10})</td>
<td>(3.4 \times 10^{-7})</td>
<td>(4.7 \times 10^{-26})</td>
<td>360</td>
<td>(6.2 \times 10^{-12})</td>
<td>(2.9 \times 10^{-9})</td>
<td>-0.3</td>
</tr>
<tr>
<td>Water</td>
<td>(3.0 \times 10^{-10})</td>
<td>(5.4 \times 10^{-10})</td>
<td>(3 \times 10^{-26})</td>
<td>460</td>
<td>(7.6 \times 10^{-12})</td>
<td>(1.3 \times 10^{-10})</td>
<td>0.6</td>
</tr>
<tr>
<td>Billiards</td>
<td>0.029</td>
<td>1</td>
<td>0.16</td>
<td>1</td>
<td>(6.6 \times 10^{-34})</td>
<td>(5.1 \times 10^{-17})</td>
<td>8</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>0.5</td>
<td>(1.4 \times 10^{-36})</td>
<td>(3.4 \times 10^{-18})</td>
<td>25</td>
</tr>
</tbody>
</table>

(all units MKS)
n_Q for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>l</th>
<th>m</th>
<th>\bar{v}</th>
<th>Δb</th>
<th>n_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.6×10^{-10}</td>
<td>3.4×10^{-7}</td>
<td>4.7×10^{-26}</td>
<td>360</td>
<td>6.2×10^{-12}</td>
<td>2.9×10^{-9}</td>
</tr>
<tr>
<td>Water</td>
<td>3.0×10^{-10}</td>
<td>5.4×10^{-10}</td>
<td>3×10^{-26}</td>
<td>460</td>
<td>7.6×10^{-12}</td>
<td>1.3×10^{-10}</td>
</tr>
<tr>
<td>Billiards</td>
<td>0.029</td>
<td>1</td>
<td>0.16</td>
<td>1</td>
<td>6.6×10^{-34}</td>
<td>5.4</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>0.5</td>
<td>1.4×10^{-36}</td>
<td>3.6</td>
</tr>
</tbody>
</table>
n_Q for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>l</th>
<th>m</th>
<th>\bar{v}</th>
<th>\mathcal{H}_{dB}</th>
<th>Δb</th>
<th>n_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.6×10^{-10}</td>
<td>3.4×10^{-7}</td>
<td>4.7×10^{-26}</td>
<td>360</td>
<td>6.2×10^{-12}</td>
<td>2.9×10^{-9}</td>
<td>-0.3</td>
</tr>
<tr>
<td>Water</td>
<td>3.0×10^{-10}</td>
<td>5.4×10^{-10}</td>
<td>3×10^{-26}</td>
<td>460</td>
<td>7.6×10^{-12}</td>
<td>1.3×10^{-10}</td>
<td>0.6</td>
</tr>
<tr>
<td>Billiards</td>
<td>0.029</td>
<td>1</td>
<td>0.16</td>
<td>1</td>
<td>6.6×10^{-34}</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>0.5</td>
<td>1.4×10^{-36}</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>

Quantum at every collision

$(n_Q < 1 \rightarrow$ breakdown of formula, but conclusion robust)
For a number of physical systems

<table>
<thead>
<tr>
<th></th>
<th>(r)</th>
<th>(l)</th>
<th>(m)</th>
<th>(\bar{v})</th>
<th>(\mathcal{A}_{dB})</th>
<th>(\Delta b)</th>
<th>(n_Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>(1.6 \times 10^{-10})</td>
<td>(3.4 \times 10^{-7})</td>
<td>(4.7 \times 10^{-26})</td>
<td>360</td>
<td>(6.2 \times 10^{-12})</td>
<td>(2.9 \times 10^{-9})</td>
<td>(-0.3)</td>
</tr>
<tr>
<td>Water</td>
<td>(3.0 \times 10^{-10})</td>
<td>(5.4 \times 10^{-10})</td>
<td>(3 \times 10^{-26})</td>
<td>460</td>
<td>(7.6 \times 10^{-12})</td>
<td>(1.3 \times 10^{-10})</td>
<td>(0.6)</td>
</tr>
<tr>
<td>Billiards</td>
<td>(8.4 \times 10^{-7})</td>
<td>(3 \times 10^{-26})</td>
<td>(2 \times 10^{-25})</td>
<td>75</td>
<td>(6.6 \times 10^{-34})</td>
<td>(5.1 \times 10^{-32})</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>(5 \times 10^{-5})</td>
<td>(1.5 \times 10^{-34})</td>
<td>(1.5 \times 10^{-35})</td>
<td>100</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

(all units MKS)

Quantum at every collision

Every Brownian Motion is a “Schrödinger Cat”
\(n_Q \) for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>(r)</th>
<th>(l)</th>
<th>(m)</th>
<th>(\bar{v})</th>
<th>(\Delta dB)</th>
<th>(n_Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.6 \times 10^{-10}</td>
<td>3.4 \times 10^{-7}</td>
<td>4.7 \times 10^{-26}</td>
<td>360</td>
<td>6.2 \times 10^{-12}</td>
<td>-0.3</td>
</tr>
<tr>
<td>Water</td>
<td>3.0 \times 10^{-10}</td>
<td>5.4 \times 10^{-10}</td>
<td>3 \times 10^{-26}</td>
<td>460</td>
<td>7.6 \times 10^{-12}</td>
<td>0.6</td>
</tr>
<tr>
<td>Billiards</td>
<td>5.1 \times 10^{-12}</td>
<td>8.16 \times 10^{-10}</td>
<td>8.16 \times 10^{-26}</td>
<td>121</td>
<td>6.6 \times 10^{-34}</td>
<td>5.1</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>7.6 \times 10^{-10}</td>
<td>1.5 \times 10^{-9}</td>
<td>1.5 \times 10^{-26}</td>
<td>121</td>
<td>1.3 \times 10^{-16}</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Quantum at every collision

Every Brownian Motion is a “Schrödinger Cat” (independent of “interpretation”)
n_Q for a number of physical systems

(all units MKS)

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>l</th>
<th>m</th>
<th>\bar{v}</th>
<th>\mathcal{A}_{dB}</th>
<th>Δb</th>
<th>n_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.6×10^{-10}</td>
<td>3.4×10^{-7}</td>
<td>4.7×10^{-26}</td>
<td>360</td>
<td>6.2×10^{-12}</td>
<td>2.9×10^{-9}</td>
<td>-0.3</td>
</tr>
<tr>
<td>Water</td>
<td>3.0×10^{-10}</td>
<td>5.4×10^{-10}</td>
<td>3×10^{-26}</td>
<td>460</td>
<td>7.6×10^{-12}</td>
<td>1.3×10^{-10}</td>
<td>0.6</td>
</tr>
<tr>
<td>Billiards</td>
<td>8×10^{-10}</td>
<td>1×10^{-10}</td>
<td>8×10^{-26}</td>
<td>145</td>
<td>6.6×10^{-34}</td>
<td>5×10^{-34}</td>
<td>0</td>
</tr>
<tr>
<td>Bumper Car</td>
<td>1.5×10^{-10}</td>
<td>1×10^{-10}</td>
<td>1.5×10^{-26}</td>
<td>150</td>
<td>1.4×10^{-18}</td>
<td>1×10^{-18}</td>
<td>0</td>
</tr>
</tbody>
</table>

This result is at the root of our claim that all everyday probabilities are quantum.

Every Brownian Motion is a “Schrödinger Cat”

Quantum at every collision
An important role for Brownian motion: Uncertainty in neuron transmission times

Brownian motion of polypeptides determines exactly how many of them are blocking ion channels in neurons at any given time. This is believed to be the dominant source of neuron transmission time uncertainties $\delta t_n \approx 1ms$.
Analysis of coin flip

\[
\delta t_f = \delta t_n \times \left(\frac{v_h}{v_h + v_f} \right)
\]

\[
\delta t_t = \sqrt{2}\delta t_f
\]

\[
f = \frac{4v_f}{\pi d}
\]

\[
\delta N = f\delta t_t = 0.5
\]

Using:

\[
\delta t_n \approx 1\text{ms} \quad v_h = v_f = 5\text{m/s}
\]

\[
d = 0.01\text{m}
\]
Analysis of coin flip

\[\Delta t_f = \Delta t_n \times \left(\frac{v_h}{v_h + v_f} \right) \]

\[\Delta t_t = \sqrt{2} \Delta t_f \]

\[f = \frac{4v_f}{\pi d} \]

\[\Delta N = f \Delta t_t = 0.5 \]

Using:

\[\Delta t_n \approx 1ms \quad v_h = v_f = 5m/s \]

\[d = 0.01m \]

50-50 coin flip probabilities are a derivable quantum result
Analysis of coin flip

\[\delta t_f = \delta t_n \times \left(\frac{v_h}{v_h + v_f} \right) \]

\[\delta t_t = \sqrt{2} \delta t_f \]

\[f = \frac{4v_f}{\pi d} \]

\[\delta N = f \delta t_t = 0.5 \]

50-50 coin flip probabilities are a derivable quantum result

Using: Without reference to “principle of indifference” etc. etc.
Analysis of coin flip

\[\delta t_f = \delta t_n \times \left(\frac{v_h}{v_h + v_f} \right) \]

\[\delta t_t = \sqrt{2} \delta t_f \]

\[f = \frac{4v_f}{\pi d} \]

\[\delta N = f \delta t_t = 0.5 \]

Using:

\[\delta t_n \approx 1ms \quad v_h = v_f = 5m/s \]

\[d = 0.01m \]

NB: Coin flip is “at the margin” of deterministic vs random: Increasing \(d\) or deceasing \(v_h\) can reduce \(\delta N\) substantially.
Analysis of coin flip

\[\delta t_f = \delta t_n \times \left(\frac{v_h}{v_h + v_f} \right) \]

\[\delta t_t = \sqrt{2} \delta t_f \]

\[f = \frac{4v_f}{\pi d} \]

\[\delta N = f \delta t_t = 0.5 \]

NB: Coin flip is “at the margin” of deterministic vs random: Increasing d or deceasing v_h can reduce δN substantially

Still, this is a good illustration of how quantum uncertainties can filter up into the macroscopic world, for systems that *are* random.
Analysis of coin flip

\[\delta t_f = \delta t_n \times \left(\frac{v_h}{v_h + v_f} \right) \]

\[\delta t_t = \sqrt{2} \delta t_f \]

\[f = \frac{4v_f}{\pi d} \]

\[\delta N = f \delta t_t = 0.5 \]

Using:

Coin diameter \(= d \)

NB: Coin flip is “at the margin” of deterministic vs random: Increasing \(d \) or deceasing \(v_h \) can reduce \(\delta N \) substantially

Still, this is a good illustration of how quantum uncertainties can filter up into the macroscopic world, for systems that *are* random.
Physical probabilities vs “probabilities of belief”

Bayes:

\[
P(\text{Theory} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Theory})}{P(\text{Data})} P(\text{Theory})
\]

Physical probability: To do with physical properties of detector etc
Physical probabilities vs “probabilities of belief”

Bayes:

$$P(\text{Theory} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Theory})}{P(\text{Data})} P(\text{Theory})$$

Probabilities of belief:
• Which data you trust most
• Which theory you like best
Physical probabilities vs “probabilities of belief”

Bayes:

\[
P(\text{Theory} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Theory})}{P(\text{Data})} \cdot P(\text{Theory})
\]
Physical probabilities vs “probabilities of belief”

Bayes:

\[P(\text{Theory} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Theory})}{P(\text{Data})} P(\text{Theory}) \]

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential.
Physical probabilities vs “probabilities of belief”

Bayes:

\[
P(\text{Theory} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Theory})}{P(\text{Data})} \cdot P(\text{Theory})
\]

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[
P_4(T \mid D_4) = \frac{P(D_4 \mid T)}{P(D_4)} P_3(T)
\]

\[
P_5(T \mid D_5) = \frac{P(D_5 \mid T)}{P(D_5)} P_4(T)
\]
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[
P_1(T \mid D_1) = \frac{P(D_1 \mid T)}{P(D_1)} P_0(T)
\]

\[
P_4(T \mid D_4) = \frac{P(D_4 \mid T)}{P(D_4)} P_3(T)
\]

\[
P_5(T \mid D_5) = \frac{P(D_5 \mid T)}{P(D_5)} P_4(T)
\]
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[P_1(T \mid D_1) = \frac{P(D_1 \mid T)}{P(D_1)} P_0(T) \]

This initial “model uncertainty” prior is the only \(P(T) \) that is a pure probability of belief.

\[P_4(T \mid D_4) = \frac{P(D_4 \mid T)}{P(D_4)} P_3(T) \]

\[P_5(T \mid D_5) = \frac{P(D_5 \mid T)}{P(D_5)} P_4(T) \]
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[P_1(T | D_1) = \frac{P(D_1 | T)}{P(D_1)} P_0(T) \]

This initial “model uncertainty” prior is the only \(P(T) \) that is a pure probability of belief.

\[P_4(T | D_4) = \frac{P(D_4 | T)}{P(D_4)} P_3(T) \]

This talk is only about \(P(D | T) \) wherever it appears.
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[P_1(T \mid D_1) = \frac{P(D_1 \mid T)}{P(D_1)} P_0(T) \]

This initial “model uncertainty” prior is the only \(P(T) \) that is a pure probability of belief.

This talk is only about \(P(D \mid T) \) wherever it appears.

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential.
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[P_1(T | D_1) = \frac{P(D_1 | T)}{P(D_1)} P_0(T) \]

This initial “model uncertainty” prior is the only \(P(T) \) that is a pure probability of belief.

This talk is only about \(P(D | T) \) appears

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential.

This is the only part of the formula where physical randomness appears.

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential.
Physical probabilities vs “probabilities of belief”

Adding new data (theory priors can include earlier data sets):

\[P_1(T | D_1) = \frac{P(D_1 | T)}{P(D_1)} P_0(T) \]

This initial “model uncertainty” prior is the only \(P(T) \) that is a pure probability of belief.

This talk is only about \(P(D | T) \) appears

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential.

This is the only part of the formula where physical randomness appears

NB: The goal of science is to get sufficiently good data that probabilities of belief are inconsequential.
All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument.
All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks & Fischler)
All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks & Fischler)
- Which theories really do require classical probabilities not yet resolved rigorously.
All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for many finite theories (AA, Banks & Fischler)
- Which theories really do require classical probabilities not yet resolved rigorously (symmetry?... simplicity? See below)
All everyday probabilities are quantum probabilities

• Proof by exhaustion not realistic
• One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
• Can still invent classical probabilities just to do multiverse cosmology
• Not a problem for many finite theories (AA, Banks & Fischler)
• Which theories really do require classical probabilities not yet resolved rigorously (symmetry?... simplicity? See below)

Some further thoughts:
Some further thoughts:

- Special relationship to cosmic structure from inflation: “probability censorship”
- A counterexample: Betting on the digits of Pi (Not!)
- Compare with classical computer
- Compare with color:
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)
2) Everyday probabilities
3) Be careful about counting!
4) Implications for multiverse/eternal inflation
Central message:

• “Randomness is (quantum) physics”
• Counting may or MAY NOT have a role in inferring or representing physical randomness
Central message:

- “Randomness is (quantum) physics”
- Counting may or **MAY NOT** have a role in inferring or representing physical randomness
- Example: Flip a coin and choose a ball:
Central message:

- “Randomness is (quantum) physics”
- Counting may or **MAY NOT** have a role in inferring or representing physical randomness
- Example: Flip a coin and choose a ball:

Counts of red & green balls here can be related in very concrete terms to the probability of heads vs tails
Central message:

- “Randomness is (quantum) physics”
- Counting may or **MAY NOT** have a role in inferring or representing physical randomness
- Example: Flip a coin and choose a ball:

Counts of red & green balls here can be related in very concrete terms to the probability of heads vs tails.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?
• Different physical “completions” of this question are possible which give different answers. (≈ measures)
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

- Different physical “completions” of this question are possible which give different answers. (≈ measures)
- Counting is NOT enough.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

- Different physical “completions” of this question are possible which give different answers. (≈ measures)
- Counting is NOT enough.

NB: “Sleeping Beauty problem”
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

- Different physical “completions” of this question are possible which give different answers. (≈ measures)
- Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question “which observer am I?”. Future data may address this, but not in time to make predictions.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

- Different physical “completions” of this question are possible which give different answers. (≈ measures)
- Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question “which observer am I?”. Future data may address this, but not in time to make predictions.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

• Different physical “completions” of this question are possible which give different answers. (≈ measures)
• Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question “which observer am I?”. Future data may address this, but not in time to make predictions.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

- Different physical “completions” of this question are possible which give different answers. (≈ measures)
- Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question “which observer am I?”. Future data may address this, but not in time to make predictions.

This is where things go wrong in the standard treatment of the multiverse.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

- Different physical “completions” of this question are possible which give different answers. (≈ measures)
- Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question “which observer am I?”. Future data may address this, but not in time to make predictions.

This is where things go wrong in the standard treatment of the multiverse.

In many cases counting observers has no predictive value.
Now ask: What is the probability that a ball drawn from the “Results” bowl is red?

• Different physical “completions” of this question are possible which give different answers. (≈ measures)
• Counting is NOT enough.

In a multiverse with many copies of you, there simply is *no* physical completion for the question “which observer am I?”.

Future data may address this, but not in time to make predictions.

This is where things go wrong in the standard treatment of the multiverse.

In many cases counting observers has no predictive value.

No point in counting for these cases.
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Outline

1) Quantum vs non-quantum probabilities (toy model/multiverse)

2) Everyday probabilities

3) Be careful about counting!

4) Implications for multiverse/eternal inflation
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem

Pocket A with p_A

Pocket B with p_B
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem

Pocket A with p_A (from quantum branching ratio)

Pocket B with p_B
One semiclassical universe having many more possible observers in it than another (often counted by volume), does *not* give that universe greater statistical weight. Quantum branching ratio into one vs the other (p_A / p_B) \textbf{does} count.
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youniness/end of time” problem
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem

This model has no “Boltzmann Brain” problem as long as p_A / p_B is not too small

Pocket A with p_A

Pocket B with p_B
Implications for eternal inflation

1) No "volume factors"

2) Boltzmann Brain problem reduced

3) No "youngness/end of time" problem

This model has no "Boltzmann Brain" problem as long as $\frac{p_A}{p_B}$ is not too small

Pocket A with p_A

Pocket B with p_B

Boltzmann brains are observers which look good vs current data but which quickly go bad
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youness/end of time” problem

More pocket universes produced later vs earlier (due to more inflation)
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem

More pocket universes produced later vs earlier (due to more inflation) & experience any time cutoff

Time cutoff regulator
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youness/end of time” problem

More pocket universes produced later vs earlier (due to more inflation) & experience any time cutoff

Time cutoff regulator
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “youngness/end of time” problem

More pocket universes produced later vs earlier (due to more inflation) & experience any time cutoff

Time cutoff regulator

See also Guth & Vanchurin
Implications for eternal inflation

1) No “volume factors”
2) Boltzmann Brain problem reduced
3) No “younghness/end of time” problem

More pocket universes produced later vs earlier (due to more inflation) & experience any time cutoff

- Wavefunction cannot give probabilities for which pocket you are in.
- Time cutoff only there as (wrong) attempt to determine which pocket
- The younghness/end of time problem is asking a question the theory cannot answer
Conclusions

1) All practically applicable probabilities are of physics (quantum) origin.
2) Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities.
3) Standard discussions of probabilities in cosmology often make errors re 2).
4) 1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”). Implications so far:
 a) No (counting based) volume factors
 b) Reduced Boltzmann Brain problem
 c) No youngness/end of time problem
 d) Measure problems apparently resolved?
5) More rigorous treatment of eternal inflation (etc) needed to determine full implications.
All practically applicable probabilities are of physics (quantum) origin. Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities. Standard discussions of probabilities in cosmology often make errors re 2). 1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”). Implications so far:

- No (counting based) volume factors
- Reduced Boltzmann Brain problem
- No youngness/end of time problem
- Measure problems apparently resolved?

More rigorous treatment of eternal inflation (etc) needed to determine full implications.

I still have other concerns about eternal inflation that makes me prefer finite theories, but this “probability discipline” may resolve what I used to think was the most troubling issue.
All practically applicable probabilities are of physics (quantum) origin.

Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities.

Standard discussions of probabilities in cosmology often make errors re 2).

1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”).

Implications so far:

a) No (counting based) volume factors
b) Reduced Boltzmann Brain problem
c) No youngness/end of time problem
d) Measure problems apparently resolved?

More rigorous treatment of eternal inflation (etc) needed to determine full implications.

Conclusions

I still have other concerns about eternal inflation that makes me prefer finite theories,

but this “probability discipline” may resolve what I used to think was the most troubling issue.
I still have other concerns about eternal inflation that makes me prefer finite theories, but this “probability discipline” may resolve what I used to think was the most troubling issue.

Implications so far:

- No (counting based) volume factors
- Reduced Boltzmann Brain problem
- No youngness/end of time problem
- Measure problems apparently resolved?

More rigorous treatment of eternal inflation (etc) needed to determine full implications.
1) All practically applicable probabilities are of physics (quantum) origin.

2) Counting of objects may or may NOT be a way of accessing legitimate quantum probabilities.

3) Standard discussions of probabilities in cosmology often make errors re 2).

4) 1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”).

 Implications so far:
 a) No (counting based) volume factors
 b) Reduced Boltzmann Brain problem
 c) No youngness/end of time problems
 d) Measure problems apparently resolved?

5) More rigorous treatment of eternal inflation (etc) needed to determine full implications.

Conclusions

⇒ I still have other concerns about eternal inflation that makes me prefer finite theories,
⇒ but this “probability discipline” may resolve what I used to think was the most troubling issue.

⇒ Perhaps related to work by Nomura and Garriga & Vilenkin and collaborators.

⇒ In a systematic treatment the classical probabilities will reappear as “priors”. Same math but very different role.

Landscape OK too
1) All practically applicable probabilities are of physics (quantum) origin.

2) Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities.

3) Standard discussions of probabilities in cosmology often make errors re 2) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”).

Implications so far:

a) No (counting based) volume factors
b) Reduced Boltzmann Brain problem
c) No youngness/end of time problem

d) Measure problems apparently resolved? (perhaps)

4) More rigorous treatment of eternal inflation (etc) needed to determine full implications.

Conclusions

Albrecht @ Stockholm 6/4/15

→ I still have other concerns about eternal inflation that makes me prefer finite theories,
→ but this “probability discipline” may resolve what I used to think was the most troubling issue.

Landscape OK too

Clashes with my work on the “clock ambiguity”

Perhaps related to work by Nomura and Garriga & Vilenkin and collaborators.
Conclusions

1) All practically applicable probabilities are of physics (quantum) origin.
2) Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities
3) Standard discussions of probabilities in cosmology often make errors re 2)
4) 1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”).
 Implications so far:
 a) No (counting based) volume factors
 b) Reduced Boltzmann Brain problem
 c) No youngness/end of time problem
 d) Measure problems apparently resolved?
5) More rigorous treatment of eternal inflation (etc) needed to determine full implications.
Conclusions

1) All practically applicable probabilities are of physics (quantum) origin.
2) Counting of objects may or MAY NOT be a way of accessing legitimate quantum probabilities.
3) Standard discussions of probabilities in cosmology often make errors re 2).
4) 1) and care about 2) allow us to introduce better discipline into cosmological discussions (just say “no”).
 Implications so far:
 a) No (counting based) volume factors
 b) Reduced Boltzmann Brain problem
 c) No youngness/end of time problem
 d) Measure problems apparently resolved?
5) More rigorous treatment of eternal inflation (etc) needed to determine full implications.
Additional Slides
Cosmic structure

Cosmic structure originates “superhorizon” in Standard Big Bag (why would they be quantum?)

Here

\[\frac{\delta \rho}{\rho} \]

\[\log(a/a_0) \]

\[\log(R_H/R_{H0}) \]

Cosmic length scale

Scale factor (measures expansion, time)

A note on “probability censorship”
Cosmic structure originates in quantum ground state in inflationary cosmology.

Cosmic structure "superhorizon" in Standard Big Bag (why would they be quantum?)

Scale factor (measures expansion, time)
Proof by exhaustion not realistic
One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
Can still invent classical probabilities just to do multiverse cosmology
Not a problem for many finite theories (AA, Banks & Fischler)
Which theories really do require classical probabilities not yet resolved rigorously (symmetry?.. simplicity? See Cooperman 2011)

All everyday probabilities are quantum probabilities

Compare with identical particle statistics
Further discussion

Bet on the millionth digit of π

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964466229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433005727036575959195309218611738193261179310511185480744623799627245673518857527248912279381803119491298336733624065664308602139494639522473719070217986094370277059392171762931765238467481846766940513200056812714152635608278757134275778960917363717872146844090122495343014654958537105079227968925892354201995611121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850385261931188171010003137838752886586575332083814206171776691473035982534904287554687311595626838823537875937519577818577805323171226806613001927876611195909216420198938095257201605485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637466993931925506040092770167113900984882401285836160356370767601047101819429559619894676783744494482553797747268471040475346462608046684259069491293313677028989152104752162059660240580381501935112533824300355876402474964732639141192727604269922796782354781636009341721641219924586315030328618297455570674983850549458858692969956909272107975093029553211653449872027559602364806654991198818347977535663698074265252786255181841757467289097772793800081647060016145249192173217214772350141441973568548161361573525521334757418494684838523232907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383279679766814541009538837836095060680462251252051173929849860841284886269456042419652850222106611863067442786220391949450471237137876960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496

Albrecht @ Stockholm 6/4/15 145
Further discussion

Bet on the millionth digit of π

• The *only* thing random is the choice of digit to bet on

3.141592653589793238462643383279502884197169399375105820974944592307816406286
208998628034825342117067982148086513282306647093844609550582231725359408128481
11745028410270193852110559644622948954930381964428810975665933446128475648233
786783165271201909145648566923460348610454326648213393607260249141273724587006
606315588174815209209628292954091715364367892590360011330530548820466521384146
9519411560943305720365675959195309218611738193261117931051118548074462379962749
567351885752724891227938183011949129833673362440656643086021394946395224737190
70217986094370277059321717629317652384674818467669405132000568127145263560827
875771342757789609173637178271468440901224953430146549585371050792279689258923
542019956112129021960864034418159813629774771309960518707211349999998372978049
9510597317328160963185950244594553469083026425223082533446850352619311881711010
0031473887582886587533208381420617177669147303598253490428755468731159562863882
353787593751957782487785032117226806613001927876611195909216420198938095257201
065485863278865936153381827968230301952035301852968995773622599413891249721775
283479131515574857242454150659595082953311686172785588907509838175463746939319
2550604009277016717139009848824012858361603563707660147071018194295596198946767
837449448255379774726847104047534646208046684259069491293313677028989151204752
162056966024058083185019351125338230035857640247496473263914199272604269922796
7823547816360093417216421924586315030286182974555706749838505494588586926995
69092721079750930295532116534498720275596023648066549919881834797753566369807
4265425278625625181841757467282090777279380081647060016145249192173217214772350
14144197356854816136115735255213347574184946848385232323907394143334547762416862
518983569485562099212221848272550254256887617790494601653466804988627232791786
0857843832796797668145410095388378360950680064225125205117392984896084128488
6269456042419652850222106611863067442786220391949450471237137876960956364371917
2874677646575739624138908658326459958133904780275909994657640789512694683938352
595709825822620522489407726719478268482601476990902640136394437455305068203496
Further discussion

Bet on the millionth digit of π

- The *only* thing random is the choice of digit to bet on
- Fairness is about lack of correlation between digit choice and digit value
Further discussion

Bet on the millionth digit of π

- The *only* thing random is the choice of digit to bet on
- Fairness is about lack of correlation between digit choice and digit value
- Choice of digit comes from
 - Brain (neurons with quantum uncertainties)
 - Random number generator \rightarrow seed \rightarrow time stamp (when you press ENTER) \rightarrow brain
 - Etc
Further discussion

Bet on the millionth digit of π

- The *only* thing random is the choice of digit to bet on
- Fairness is about lack of correlation between digit choice and digit value
- Choice of digit comes from
 - Brain (neurons with quantum uncertainties)
 - Random number generator → seed → time stamp
 (when you press ENTER) → brain
 - Etc
- The only randomness in a bet on a digit of π is quantum!
Further discussion

Bet on the millionth digit of π

- The *only* thing random is the choice of digit to bet on
- Fairness is about lack of correlation between digit choice and digit value
- Choice of digit comes from
 - Brain (neurons with quantum uncertainties)
 - Random number generator \rightarrow seed \rightarrow time stamp (when you press ENTER) \rightarrow brain
 - Etc
- The only randomness in a bet on a digit of π is quantum!

Payout:

$$P_\pi = \lim_{N_{tot} \to \infty} \frac{1}{N_{tot}} \sum_{\{i\}} (N_i^\pi - 4.5) = 0$$
Classical Computer: The “computational degrees of freedom” of a classical computer are very classical: Engineered to be well isolated from the quantum fluctuations that are everywhere

→

• Computations are deterministic
• “Random” is artificial
• Model a classical billiard gas on a computer:
 ➢ All “random” fluctuations are determined by (or “readings of”) the initial state.
Classical Computer: The “computational degrees of freedom” of a classical computer are very classical: Engineered to be well isolated from the quantum fluctuations that are everywhere →

- Computations are deterministic
- “Random” is artificial
- Model a classical billiard gas on a computer:
 ➢ All “random” fluctuations are determined by (or “readings of”) the initial state.

Further discussion
Classical Computer: The “computational degrees of freedom” of a classical computer are very classical: Engineered to be well isolated from the quantum fluctuations that are everywhere →

- Computations are deterministic
- “Random” is artificial
- Model a classical billiard gas on a computer:
 - All “random” fluctuations are determined by (or “readings of”) the initial state.
Our ideas about probability are like our ideas about color:

• Quantum physics gives the correct foundation to our understanding
• Our “classical” intuition predates our knowledge of QM by a long long time, and works just fine for most things
• Fundamental quantum understanding needed to fix classical misunderstandings in certain cases.
Our ideas about probability are like our ideas about color:

- Quantum physics gives the correct foundation to our understanding
- Our “classical” intuition predates our knowledge of QM by a long time, and works just fine for most things
- Fundamental quantum understanding needed to fix classical misunderstandings in certain cases.

Further discussion
Our ideas about probability are like our ideas about color:
- Quantum physics gives the correct foundation to our understanding.
- Our "classical" intuition predates our knowledge of QM by a long time, and works just fine for most things.
- Fundamental quantum understanding needed to fix classical misunderstandings in certain cases.