Lecture Ra

News: The library has acknowledged receipt of my reserve list for the class, and is processing it. I will keep you posted

Reading

- Section 2.1
- Section 2.2 up to (but not including) the paragraph that starts "these subtle cases" on p57
- Section 2.3 \& 2.4

Today: Vectors and Introduction to manifolds

VECTORS:
Starting with material from Chapter 1 (Special relativity in Minkowski space) p17

Basis

$$
A=A^{n} \hat{e}_{(u)}
$$

Shin a curve $X^{\mu}(\lambda)$
The tangent vector $V(x)$ has components

$$
V^{\mu}=\frac{d x^{\mu}}{d \lambda}
$$

Under Lents transforms

$$
\left.x^{\mu} \rightarrow x^{\mu^{\prime}}=\right\rfloor_{\mu}^{\mu^{\prime}} x^{\mu}
$$

$$
\text { thew } V^{\mu} \rightarrow V^{\mu^{\prime}}=\Lambda_{\mu}^{\mu^{\prime}} V^{\mu}
$$

Lean how hade metros thanedom by nothing that the vector V is mivainut.

$\Rightarrow \hat{e}_{(u)}$ moat trangenn as the increase Lorentz transform.
Notation: Inverse of $\Lambda_{2}^{w 0}$ written as Λ^{10}
(primes indicate the new coordinates and the prim
DUAL VECTORS (Carroll section 1.5)

- If one wants to form an invariant (scalar) dot product, one of the vectors dotted needs to transform as the inverse Lorentz transform.
- Never worry about this with 3d rotations because

$$
R^{\top}=R^{-1} \text { for these }
$$

- Vectors that transform according to the inverse Lorentz transform are called "dual vectors" or "oneforms" written as

$$
w_{\text {fo }} \leftarrow \text { lower }
$$

$$
\text { wa } \leftarrow \text { lower }
$$

- A basis for dual vectors has an upper index and is written:

$$
\hat{\theta}^{(\nu)}
$$

- With the property

$$
\hat{\theta}^{(\nu)}\left(\hat{e}_{(\mu)}\right)=\delta_{\mu}^{\nu}
$$

- A simple dual vector is a gradient of a scalar

$$
d \phi \equiv \underbrace{\frac{\partial \phi}{\partial x^{\mu}}} \hat{\theta}(\mu)
$$

The components
of $d \phi$

Using the chain rule:

$$
\begin{aligned}
\frac{\partial \phi}{d x^{\prime}} & =\underbrace{}_{\underbrace{\frac{\partial x^{\mu}}{\mu^{\prime}}} \frac{\partial \phi}{\partial x^{\mu}}} \\
& =\underbrace{\mu^{\prime}} \frac{\partial \phi}{\partial x^{\mu}}
\end{aligned}
$$

confirming the dual vector transformation rule.

