Physics 262 Early Universe Cosmology

Homework 5

Assigned Feb 7
Due Feb 22

These papers may be helpful:
https://arxiv.org/abs/astro-ph/9711102 (especially for problem 5.3)
https://arxiv.org/abs/astro-ph/9908085 (for problem 5.4)
However, it is possible to do fine without reading these papers.
5.1) For the following three cases, express the Friedmann eqn purely in terms of a, \dot{a}, and constants. Integrate to get an expression for $a(t)$. For the first two, use the convention $a(0)=0$. In each case, give your answer in terms of t_{0} and $a_{0}\left(=a\left(t_{0}\right)\right)$.
i) A flat universe containing only Relativistic Matter
ii) A flat universe containing only Non-relativistic matter.
iii) A flat universe containing only ρ_{Λ}
5.2) The equation of sate for dark energy is often parameterized by the expression

$$
\begin{equation*}
w(a)=w_{0}+w_{a}(1-a) \tag{1.1}
\end{equation*}
$$

Derive an analytic expression for the dark energy density $\omega_{Q}(a)$ in terms of $\omega_{Q, 0}$, w_{0} and w_{a}.
5.3) Consider a homogeneous scalar field evolving according to K\&T Eqn. (8.14), with $V(\varphi)=V_{0} e^{-\lambda \varphi}$. You also will need $K \& T$ Eqn (8.20) and Eqn $(8,21)$ for what follows.
a) Show analytically that if the only components of the Universe are nonrelativistic matter and a homogeneous scalar field φ (and $\rho_{k}=0$), a solution exists where ρ_{φ} remains a fixed fraction of ρ_{m} and $V(\varphi)=\frac{1}{2} \rho_{\phi}(\varphi)$. Hint: You probably want to just do this by substitution.
b) Give an expression for $\frac{\rho_{\varphi}}{\rho_{\text {tot }}}$ in terms of λ.
c) For what values of λ does your answer to b) make sense?
d) Verify that the "equation of state parameter" $\frac{p_{\varphi}}{\rho_{\varphi}}$ has the value it should for this solution.

Continued next page
One model of dark energy has a homogeneous scalar field obeying K\&T Eqn. (8.14) with

$$
\begin{equation*}
V(\varphi)=V_{0}\left(\chi(\varphi-\beta)^{2}+\delta\right) e^{-\lambda \varphi} \tag{1.2}
\end{equation*}
$$

The next few problems will deal with this case.
You should incorporate what we discuss about this model in class into your approach to problem 5.4.
5.4) Consider a simple two component model where made up of only ρ_{m} and ρ_{φ}, in the case where

$$
\begin{align*}
& \lambda=8 \\
& \beta=34 \\
& V_{0}=1 \\
& \delta=0.005 \tag{1.3}\\
& \chi=1 \\
& \rho_{r}=\rho_{k}=0
\end{align*}
$$

Here I use "reduced Planck units" where $8 \pi G \equiv 1$. Solve K\&T Eqn. (8.14) and experiment with a variety of initial values of φ. For each case I recommend that you choose an initial value for ρ_{m} that obeys the scaling solution you found in problem 5.3. This recommendation is just to offer you a starting point, and you will probably want to fiddle around with it to get a solution without too many transients. To hand in:
a) On the same graph, plot $V(\varphi)$ given by Eqn 1.2 in and $V(\varphi)=V_{0} e^{-\lambda \varphi}$ for the parameters given in Eqn. (1.3). Chose a range for ϕ that includes $\varphi=\beta$ and extends far enough to either side of β that the two curves become similar (away from $\varphi=\beta$).
b) Find a numerical solution for $\varphi(t)$ for this potential with $\varphi \ll \beta$ that approximates your solution in 5.3a). Show explicitly with a plot or table that this is the case.
c) Find a solution where $w_{\varphi}(t) \rightarrow-1$ as time evolves, and plot the evolution of $w_{\varphi}(t)$ for this solution. Hint: You will find this solution for values of φ not too far from β.
d) Compare a value of ρ_{φ} from your solution in 5.4 c where $w \approx-1$ with ρ_{Λ} from HW2.
e) Plot Ω_{φ} and Ω_{m} as a function of a or t (whatever is convenient) for the solutions in your answer to 5.4 b) and 5.4 c).
f) Make a single two panel plot showing the solutions you found in problem 5.4c. In the top panel plot φ on the x-axis and t or a on the y-axis. In the lower panel plot $V(\phi)$. Make sure the x -axis is the same on both panels. This plot will help you see where the field is moving in the potential as a function of time

Hints
i) To do the numerical integration I recommend Matlab function "ode45".
ii) You will need to integrate simultaneously to get $\rho_{m}(t)$. One way to do this is to solve for $a(t)$ and use $\rho_{m} \propto \frac{1}{a^{3}}$. But it probably does not make sense to use the $a_{0}=1$ convention here. In particular, this homework is a theoretical exploration rather than a realistic model of the cosmos. I do not expect you to be concerned with which if any parts of your calculations might correspond to "today" $\left(a=a_{0}\right)$.

