Physics 262 Early Universe Cosmology Homework 5 Assigned Feb 7 Due Feb 22

These papers may be helpful: <u>https://arxiv.org/abs/astro-ph/9711102</u> (especially for problem 5.3) <u>https://arxiv.org/abs/astro-ph/9908085</u> (for problem 5.4) However, it is possible to do fine without reading these papers.

5.1) For the following three cases, express the Friedmann eqn purely in terms of a, \dot{a} , and constants. Integrate to get an expression for a(t). For the first two, use the convention a(0)=0. In each case, give your answer in terms of t_0 and $a_0 (=a(t_0))$. i) A flat universe containing only Relativistic Matter ii) A flat universe containing only Non-relativistic matter. iii) A flat universe containing only ρ_{Λ}

5.2) The equation of sate for dark energy is often parameterized by the expression $w(a) = w_0 + w_a (1-a)$ (1.1)

Derive an analytic expression for the dark energy density $\omega_Q(a)$ in terms of $\omega_{Q,0}$, w_0 and w_a .

5.3) Consider a homogeneous scalar field evolving according to K&T Eqn. (8.14), with $V(\varphi) = V_0 e^{-\lambda \varphi}$. You also will need K&T Eqn (8.20) and Eqn (8.21) for what follows.

- a) Show analytically that if the only components of the Universe are non-relativistic matter and a homogeneous scalar field φ (and $\rho_k = 0$), a solution exists where ρ_{φ} remains a fixed fraction of ρ_m and $V(\varphi) = \frac{1}{2}\rho_{\phi}(\varphi)$. *Hint: You probably want to just do this by substitution.*
- b) Give an expression for $\frac{\rho_{\varphi}}{\rho_{tot}}$ in terms of λ .

c) For what values of λ does your answer to b) make sense?

d) Verify that the "equation of state parameter" $\frac{p_{\varphi}}{\rho_{\varphi}}$ has the value it should for this solution.

Continued next page

One model of dark energy has a homogeneous scalar field obeying K&T Eqn. (8.14) with

$$V(\varphi) = V_0 \left(\chi \left(\varphi - \beta \right)^2 + \delta \right) e^{-\lambda \varphi}$$
(1.2)

The next few problems will deal with this case.

You should incorporate what we discuss about this model in class into your approach to problem 5.4.

5.4) Consider a simple two component model where made up of only ρ_m and ρ_{φ} , in the case where

$$\lambda = 8$$

$$\beta = 34$$

$$V_0 = 1$$

$$\delta = 0.005$$

$$\chi = 1$$

$$\rho_r = \rho_k = 0$$

(1.3)

Here I use "reduced Planck units" where $8\pi G \equiv 1$. Solve K&T Eqn. (8.14) and experiment with a variety of initial values of φ . For each case I recommend that you choose an initial value for ρ_m that obeys the scaling solution you found in problem 5.3. This recommendation is just to offer you a starting point, and you will probably want to fiddle around with it to get a solution without too many transients. To hand in:

- a) On the same graph, plot $V(\varphi)$ given by Eqn 1.2 in and $V(\varphi) = V_0 e^{-\lambda \varphi}$ for the parameters given in Eqn. (1.3). Chose a range for ϕ that includes $\varphi = \beta$ and extends far enough to either side of β that the two curves become similar (away from $\varphi = \beta$).
- b) Find a numerical solution for $\varphi(t)$ for this potential with $\varphi \ll \beta$ that approximates your solution in 5.3a). Show explicitly with a plot or table that this is the case.
- c) Find a solution where $w_{\varphi}(t) \rightarrow -1$ as time evolves, and plot the evolution of $w_{\varphi}(t)$ for this solution. *Hint: You will find this solution for values of* φ *not too far from* β .

- d) Compare a value of ρ_{ϕ} from your solution in 5.4c where $w \approx -1$ with ρ_{Λ} from HW2.
- *e)* Plot Ω_{φ} and Ω_m as a function of *a* or *t* (whatever is convenient) for the solutions in your answer to 5.4b) and 5.4c).
- f) Make a single two panel plot showing the solutions you found in problem 5.4c. In the top panel plot φ on the x-axis and t or a on the y-axis. In the lower panel plot $V(\phi)$. Make sure the x-axis is the same on both panels. This plot will help you see where the field is moving in the potential as a function of time

Hints

- *i)* To do the numerical integration I recommend Matlab function "ode45".
- *ii)* You will need to integrate simultaneously to get $\rho_m(t)$. One way to do this is to

solve for a(t) and use $\rho_m \propto \frac{1}{a^3}$. But it probably does not make sense to use the $a_0 = 1$ convention here. In particular, this homework is a theoretical exploration rather than a realistic model of the cosmos. I do not expect you to be concerned with which if any parts of your calculations might correspond to "today" ($a = a_0$).