$262 N 2.0$
III.I Eym Thermo
number denaety:

$$
\begin{aligned}
& n=\frac{g}{(2 \pi)^{3}} \int f(\vec{p}) d^{3} p \\
& \rho=\frac{g}{(2 \pi)^{3}} \int E(\vec{p}) f(\vec{p}) d d^{3} p \\
& p=\frac{9}{(2 \pi)^{3}} \int \frac{|\vec{p}|^{2}}{3 \epsilon} f(\vec{p}) d^{3} p
\end{aligned}
$$

$g=$ internal (eg spin) degusof fuedug
F Kinetic Egm:

$$
\begin{aligned}
& \text { Egm: } f(\vec{p})=\left[\exp _{\frac{\text { Fermi }}{\text { Bose }}}^{\left.\left[\left(\epsilon_{\mu} \mu\right) / T\right)_{a} \pm 1\right]^{-1}}\right.
\end{aligned}
$$

III) Eym Themo
number denuety

$$
\begin{aligned}
& n=\frac{g}{(2 \pi)^{3}} \int f(\vec{p}) d^{3} p \\
& \rho=\frac{g}{(2 \pi)^{3}} \int E(\vec{p}) f(\vec{p}) d^{3} p \\
& p=\frac{g}{(2 \pi)^{3}} \int \frac{|\vec{p}|^{2}}{3 E} f(\vec{p}) d^{3} p
\end{aligned}
$$

$g=$ internal (ey spin) deynooffuden g
F Kinetic Eqm:

$$
\begin{gathered}
\text { Eqm }: \\
(\underset{p}{p})=\left[\exp \left(\left(E_{\mu}\right) \nmid t\right)_{q}^{q} \pm 1\right]^{-1} \\
\frac{\text { Ferme }}{\text { Bese }}
\end{gathered}
$$

E.G. Relalivistie Limit: $(T>m)$

$$
p=\left\{\begin{array}{l}
\left(\pi^{2} / 30\right) g T^{-4} \quad \text { (Bose) } \\
(\pi / 8)(\pi / 30
\end{array}\right.
$$

and $T \gg \mu$

Bose

$$
P=\pi^{2} / 3 \operatorname{og} T^{4}
$$

Fermi
$(8) \pi^{2 / 30} g T^{4}$
$n=\pi^{2} \zeta(3)$ 考 $T^{3} 3 / 4 \times \ldots$

$$
p=0 / 3
$$

$J(3)=1.202 \ldots$ (Ricmannzeta σ_{n}.)
An gereral differet specien could be att diffent Temp Celecoupted)
When rad dom:

$$
\rho=\frac{\pi^{2}}{30} g \not T^{4}
$$

Tphoton temp

262 N2.0 (03

$$
g_{*} \equiv \sum_{i=b \text { oxsugs }} g_{i}\left(\frac{T_{i}}{T}\right)^{4}+\frac{7}{8} \sum_{i=\text { frrmi }} g_{i}\left(\frac{T_{i}}{T}\right)^{4}
$$

$\rightarrow g_{*}$ can chanye as dist specver go
non-relatinistic
Go to other sheet.
III. 2 Entropy

Assume eqm \Rightarrow "conservation of"entropy

Entripy derity $=\frac{\rho r \rho}{T} \quad(\sec k+T)$
Daminated by sletiviatio species:

$$
\begin{gathered}
s=\frac{2 x^{2}}{4 s} g_{* s} T^{3} \\
g_{* s} \equiv \sum_{\text {bosons }} g_{i}\left(\frac{T_{T}}{T}\right)^{3} \frac{B T_{7}}{4} \sum_{\text {Femil }} g_{i}\left(\frac{T_{i}}{T}\right)^{3} \\
=T \rightarrow g_{* s}=g_{*}
\end{gathered}
$$

Important velations:

$$
s=1.80 g_{* s} n_{\gamma}
$$

Today $s=7.04 / n_{r} \quad$ (stelmodel)
bot $g_{* s}$ changes w/time (rel \rightarrow norrel)
Conservation of s :

$$
\begin{aligned}
& s \propto a^{-3} \\
= & g_{\times} s T^{3} a^{3}=\text { const }
\end{aligned}
$$

when $g_{* s}=$ conot $T \sim \frac{1}{a}$

$$
\text { Fig } 3.5 \text { (p65) }
$$

or geneally $T \propto g_{* 3}^{-1 / 3} a^{-1}$

