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Welcome to the Center for Quantum Mathematics and Physics. QMAP is a new initiative at UC Davis, aimed at fostering a vibrant
research environment for addressing foundational questions in modern theoretical and mathematical physics.

Who we are

We are theoretical physicists and mathematicians who are interested in tackling questions about how the universe works. At a broad
brush, some of the questions we seek to answer are

- What is the origin of space and time? In particular, how does spacetime emerge from a more fundamental description?
- How did our universe start and what is its fate?

- What manifestations of the quantum nature of our world are apparent and important at macroscopic scales?
- What are the mathematical structures describing our world, and what novel surprises do they reveal?

Please refer to the various pages in the Navigation bar above to learn about center's activities and research.
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The Keck 10m Telescopes on Mauna Kea,
Hawali

A. Albrecht @ Lowell 10/1/16




Segments of the Keck 10m Telescope Mirror
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Outline

1. Introduction (The “Golden age
of cosmology”)

2. The Big Picture

3. Some Big ideas

Cosmic Inflation

The String theory landscape
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The APM (Automatic Plate Machine) Survey (1992)
Sky positions of 2,000,000 Galaxies

A. Albrecht @ Lowell 10/1/16
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The Sloan Digital Sky Survey

(to locate over 100,000,000 galaxies, 3D positions for
1,000,000)

r'<17.55, d=2" 6°zlice

redshift space
b2E85 palaxies

A simulation of just 65,000 Sloan galaxies
A. Albrecht @ Lowell 10/1/16



http://www.sdss.org/gallery/gal_photos.html
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Sloan Survey Status

Imaging (Galaxy —
positions on the
sky) 47% Complete Jun 21 2002

= 47,000,000 galaxy positions

Spectroscopy (3D L
galaxy positions) 34% Complete Jul 15 2002
=> 340,000 galaxy positions

A. Albrecht @ Lowell 10/1/16 15



Sloan Survey Status

Imaging (Galoxy

positions on the
sky) 977 Complete Jun 27 2004

= 97,000,000 galaxy positions

Spectroscopy (3D I
galaxy positions) 67% Complete Jun 27 2004
= 670,000 galaxy positions
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Sloan Survey Status

Imaging (Galaxy [N
positions on the
sky) 1077% Complete Mar 13 2005

= 107,000,000 galaxy positions

Spectroscopy (3D NNNEGEGGGG_—
galaxy positions) 68% Complete Mar 15 2005
=> 680,000 galaxy positions
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Plot of a
slice of
SDSS
galaxies
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http://sdss.org/

Maps of the microwave sky (the “edge of the observable
universe’)

COBRAS/SAMBA

Transfer orbit

Simulated



Maps of the microwave sky (the “edge of the observable
universe’)

= COBRAS/SAMBA

Transfer orbit

Updated
after WMAP
announcem
ent, Feb
2003
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WMAP 3-yr map



WMAP 5-yr map



Maps of the microwave sky (the “edge of the observable
universe’)

= COBRAS/SAMBA

Transfer orbit

Updated
after Planck
announcem

ent, 2013




Maps of the microwave sky (the “edge of the observable
universe”)

= COBRAS/SAMBA

Transfer orbit




Maps of the microwave sk e of the observable

universe”) —

Transfer orbit
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Maps of the microwave sky (the “edge of the observable
universe”) N

Transfer orbit

1993




Maps of the microwave sky (the “edge of the observable
universe’)

= COBRAS/SAMBA

Transfer orbit
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aftar Planck
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Links related to previous slides

http://www.esa.int/esaSC/120398 index 0 m.html

http://www.rssd.esa.int/index.php?project=planck

http://bicepkeck.orqg/

http://www.esa.int/spaceinimages/Images/2015/02/Polaris
ation of the Cosmic Microwave Background

http://www.esa.int/esaSC/120398 index 0 m.html

http://lwww.rssd.esa.int/index.php?project=planck

http://albrecht.ucdavis.edu/special-topics/bicep2-story

https:/Iwww.ligo.caltech.edu/news



http://www.esa.int/esaSC/120398_index_0_m.html
http://www.rssd.esa.int/index.php?project=planck
http://bicepkeck.org/
http://www.esa.int/spaceinimages/Images/2015/02/Polarisation_of_the_Cosmic_Microwave_Background
http://www.esa.int/esaSC/120398_index_0_m.html
http://www.rssd.esa.int/index.php?project=planck
http://albrecht.ucdavis.edu/special-topics/bicep2-story
https://www.ligo.caltech.edu/news
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Galaxy Cluster Abell 1689

Hubble Space Telescope » Advanced Camera for Surveys

NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew University), H. Ford (JHU), M. Clampin(STScl),

G. Hartig (STScl), G. lllingworth (UCO/Lick Observatory), the ACS Science Team a SA
5Tsct-choa.ma i s AT recrﬂtz_%liowell 10/1/16

Using Hubble’s
“advanced camera
for surveys”
Installed June 2002

36



http://hubblesite.org/
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http://www.nasa.gov/mission_pages/hubble/main/index.html

Some Future Plans
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LSST (Large-aperture
Synoptic Survey
Telescope)

- -"“Space Telescope

A. Albretht @ Lowell 10/1/16.
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LSST (Large-
aperture Synoptic
Survey Telescope)




LSST (Large-
aperture Synoptic
Survey Telescope)




LSST (Large-aperture
Synoptic Survey
Telescope)

: (2018 Launch)
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FIELD INFRARED SURVEY TELESCOPE

Home About | Science Observatory Resources FAQ

WEFIRST

WFIRST will survey large areas of the sky measuring the effects of dark matter on the distribution of galaxies - It will als e distant Type la
supernovae to use them as fracers of dark matter and dark energy. It will provide a huge step forward in our understanding of dark matter and dark energy.

Wi 2 5 is to develop the mission requirements and architecture n to meet the programmatic requirements and
j reliminary Design phase.

@ preparations are on frac a mid-2020 launch.
42
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http://jwst.nasa.gov/index.html
https://www.lsst.org/
http://wfirst.gsfc.nasa.gov/

Outline
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Distances In the Universe



Measure of distance: One Kilometer = Walk
from the Manetti Shrem to Delta of Venus




Measure of distance: One Kilometer = Walk
from the Manetti Shrem to Delta of Venus

Count cosmic distances as grains of sand:
One grain of sand per kilometer.

Grain of sand
(enlarged)




Diameter of earth = 12,760 kilometers €=>
1 Teaspoon of sand

w

Image © 2006 NASA
Imag _}‘F’i




Distance to Moon = 356,410 kilometers €=
1 Handful of sand




Distance to Moon = 356,410 kilometers €=
1 Handful of sand

(Also roughly the distance light travels in one
second)




Distance from Earth to Sun = 149,600,000
kilometers (8 light minutes) €= 1 Milkshake
cup of sand

1
&




Distance from Earth to Pluto = 6,000,000,000
kilometers €= 1 wheelbarrow of sand




Distance from Earth to Nearest Star =
40,000,000,000,000 kilometers €= 1 dumpster of
sand

Alphe Certauri A B .
-

F rox fime,
Centavrd




Distance from Earth to Edge of our galaxy =
1,000,000,000,000,000,000 kilometers €=> 1
Physics/Geology Bulidng full of sand




Distance from Earth to Edge of our galaxy =
1,000,000,000,000,000,000 kilometers €=> 1
Physics/Geology Bulidng full of sand




Average distance between galaxies = 3x10%
kilometers €=> 1 baseball stadium full of sand
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Farthest visible “object” in the universe: 1x10%
kilometers €= mountain range of sand
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What we know about the big picture

1) On large scales the matter in the Universe is spread
out very smoothly ("Homogeneous")

Mean density: 10~ gram/cm’

2) The Universe is expanding /.
Hubble law: V= Hr

i 3m/sec
100lightyears

N

A. Albrecht @ Lowell 10/1/16 60



The homogeneity of the Universe

Isotropy of the microwave
background (from the “edge of the
observable universe”) to one part

In 100,000

A. Albrecht @ Lowell 10/1/16
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The homogeneity
of the universe

We are here

Marth

11268 galaxies

Radial

Direction
South

12434 galaxies
30

GC(IC(XY Sur‘ve?élbrecht @ Lowell 26/1/16 o 1"h . 3 62



The homogeneity
of the universe

Radial
Direction

10000 km/'s

élbrecht @ Lowell 26/1/16 = 3" 63

Galaxy survey



The Hubble law
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Hubble Expansion

k] }‘.(“-‘

Hot, Dense past

A. Albrecht @ Lowell 10/1/16
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Acceleration of the universe

Preliminary Analysis
S5 T T T T 171
Supernova

Cosmokogy . g
Project & 40 FE

M2
Mo
I 1

Mo
3
1 1 1

ellective Mg

18-

Hamuy et al
(A 1896)

.05 0.1 0.2
redshift Z

The Hubble law at great distances depends on the
variations of the Hubble "constant” H with time.
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Cosmic acceleration

Using supernovae (exploding stars) as cosmic
“mileposts”, acceleration of the Universe has been
detected.

No Big Bang

Supernovae P refe rl’ed by
modern data

“Ordinary” nona
accelerating
matter

Clusters
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€ Amount of ordinary matter=>
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Mass-Energy
of the a
Universe made
only out of
standard
model matter

Surprise factor

Amount of “antigravity” matter=>

(Dark Energy)

No Big Bang

€ Amount of gravitating matter=>»
A. Albrecht @ Lowell 10/1/16

Preferred
by modern
data

Red line: Nc
anti-gravity
matter
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Mass-Energy
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Universe made
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standard
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(Dark Energy)

Need to add
dark matter
here

O

€ Amount of gravitating matter=>»
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Preferred
by modern
data

Need to add
dark energy
here

Red line: No
anti-gravity
matter
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Cosmic acceleration (newest data)

Using supernovae (exploding stars) as cosmic
“mileposts”, acceleration of the Universe has been
detected.

No Big Bang

Supernovae P refe rl’ed by
modern data

“Gravitating”
non
accelerating
matter
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Cosmic acceleration

Accelerating matter is required to fit current data

No Big Bang

Preferred by
data c. 2003

Supernovae
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Cosmic acceleration

Accelerating matter is required to fit current data

|
No Big Bang Kowalski, et al., Ap.J.. (2008)

Preferred by
data c. 2008

Supernovae

1 matter (“Dark energy”)=>

“Ordinary” non
accelerating
matter

=
o
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<
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€ Amount of “ordinary” gravitating matter=>
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Cosmic acceleration

Accelerating matter is required to fit current data

|
No Big Bang Kowalski, et al., Ap.J.. (2008)

Preferred by
data c. 2008

Supernovae

1 matter (“Dark energy”)=>

“Ordinary” non
accelerating
matter

=
o
c
S
O
S
<
7

€ Amount of “ordinary” gravitating matter=>»

(Includes dark matter)
A. Albrecht @ Lowell 10/1/16 77



Supernovae P refe rl’ed by
modern data

“Gravitating”
non
accelerating
matter

Clusters
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€ Avhount of gravitating maiter=>

In the presence of dark energy, the simple
connection between open/closed/flat and
the future of the universe no longer holds
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95% of the cosmic matter/energy Is a mystery.
It has never been observed even in our best
laboratories

Ordinary Matter
(observed in labs)

2%

Dark Matter

Dark Energy 2504,

(accelerating)
70%

A. Albrecht @ Lowell 10/1/16 79
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of cosmology”)

2. The Big Picture

3. Some Big ideas

Cosmic Inflation

The String theory landscape
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Cosmic Inflation

A period of accelerated expansion in the very early
universe

Motivated by particle physics (related to the recently
discovered Higgs particle).

In most models inflation operates when the temperature
was 10% times greater than today!

Conceptually similar in some ways to the acceleration
observed today (interesting relationship between the two)

A. Albrecht @ Lowell 10/1/16 85
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Cosmic inflation creates
features in the universe on
all these different lengths.
The yellow boxes give the
time between “feature

creation” in units of |10

seconds!

A. Albrecht @ Lowell
10/1/16
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Cosmic Microwave Background (CMB) map produced by
the Planck satellite (sphere shown using a projection, like
in an atlas)

The map shows minute variations in the temperature (just
1 part in 100,000, or in the 5" decimal place).
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This plot shows one way to quantify the feature in the
CMB map. Roughly, the x-axis labels patch size, and the y-
axis show how strongly the temperature typically varies
among patches of that size.




Using the CMB to learn about the Universe
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Cosmic Inflation

A period of accelerated expansion in the very early
universe

Motivated by particle physics (related to the recently
discovered Higgs particle)

Conceptually similar in some ways to the acceleration
observed today (interesting relationship between the two)

Extraordinarily successful predictions of features in the
observed universe

A. Albrecht @ Lowell 10/1/16
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Cosmic Inflation

A period of accelerated expansion in the very early
universe

Motivated by particle physics (related to the recently
discovered Higgs particle)

Conceptually similar in some ways to the acceleration
observed today (interesting relationship between the two)

Extraordinarily successful predictions of features in the
observed universe

Very problematic aspects emerge when we attempt to
complete the picture. (The cause of intensive research
and debate among the experts.)

A. Albrecht @ Lowell 10/1/16 91
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May cosmologists believe in “eternal inflation” (our universe
exists in a “pocket” with eternal inflation all around us).
Eternal inflation theory predicts infinitely many pocket
universes, some like ours, some different

But Which
one is really

@«*@ ours?

b

This question appears to ez
lead to deep ambiguities

and problems with the |
theory that cause some

to reject the idea of
cosmic inflation
altogether

A\



Cosmic Inflation

* A period of accelerated expansion in the very early
universe

 Motivated by particle physics (related to the recently
discovered Higgs particle)

e Conceptually similar in some ways to the 3
observed today (interesting relationship A very
exciting

xtraordinarily successful predictions of place to be!

observed universe

e Very problematic aspects emerge when we attempt to
complete the picture. (The cause of intensive research
and debate among the experts.)

A. Albrecht @ Lowell 10/1/16



° Multiverse debate, World Science Festival 2'013H_

. e A very
ch?v=2Qt-eGKa3dM EXCiting
xtraordinarily successful predictions of place to be!

observed universe

opsScived LOddy U

https://www.yout

e Very problematic aspects emerge when we attempt to
complete the picture. (The cause of intensive research

and debate among the experts.)
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https://www.youtube.com/watch?v=2Qt-eGKa34M
https://www.youtube.com/watch?v=2Qt-eGKa34M
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The String Theory Landscape

e The cosmic acceleration observed today has proven very
difficult to incorporate into our fundamental theories of
physics.

A. Albrecht @ Lowell 10/1/16 100



The String Theory Landscape

e The cosmic acceleration observed today has proven very
difficult to incorporate into our fundamental theories of
physics.

* These difficulties have caused some theorists to embrace
the “string theory landscape”
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The String Theory Landscape

e The cosmic acceleration observed today has proven very
difficult to incorporate into our fundamental theories of
physics.

* These difficulties have caused some theorists to embrace
the “string theory landscape”

* Instead of the physical world around us exhibiting “the
fundamental laws”, according to the STL picture the
universe is made of a landscape of different “worlds”
which with their own laws of physics.

A. Albrecht @ Lowell 10/1/16 102



Instead of the physical world around us exhibiting “the
fundamental laws”, according to the STL picture the
universe is made of a landscape of different “worlds”

which with their own laws of physics.
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16 String Theo

A radical change from
how we thought we
should be doing physics

e Théw mLies
the “string theory lan®

* Instead of the physical world around us exhibiting “the
fundamental laws”, according to the STL picture the
universe is made of a landscape of different “worlds”
which with their own laws of physics.

A. Albrecht @ Lowell 10/1/16 104



Conclusions

 The search for a “big picture” of the Universe that explains
why the region we observe should take this form has proven
challenging, but has generated exciting ideas.

* We know we can do science with the Universe

e |t appears that there is something right about cosmic
inflation

e dSE cosmology offers a finite alternative to the extravagant
(and problematic) infinities of eternal inflation

 Predictions of observable levels of cosmic curvature from dSE
cosmology will give an important future test
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