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Cosmic acceleration

Accelerating matter is required to fit current data

Supernova Cosmology Project
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Cosmic acceleration

Accelerating matter is required to fit current data

Supernova Cosmology Project
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Cosmic acceleration

Accelerating matter is required to fit current data
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Friedmann Eqgn.
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Friedmann Eqgn.
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Friedmann Eqgn.
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Positive acceleration requires

« W=p/p<-1/3] (unlike any known constituent of the
Universe) or

e a non-zero cosmological constant or

e an alteration to General Relativity.
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Two “familiar” ways to achieve
acceleration:

< _ _71) Einstein’s cosmological constant
a and relatives (w=-1)

2) Whatever drove inflation:
Dynamical, Scalar field?

ation requires

w=p/p<-1/3
lverse) or

unlike any known constituent of the

* a non-zero cosmological constant or

 an alteration to General Relativity.
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Some general issues:

Numbers:

+Today, | ppe ~107°M? ~(107eV )

 Field models typically require a particle mass of

m, <10~*eV =~ H,
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Some general issues:
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Where do these come from and how are they
protected from quantum corrections?
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Some general issues

A cosmological constant | A

 Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

»Vacuum energy problem
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Some general issues

A cosmological constant | A

 Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

»Vacuum energy problem (not resolved by scalar
fleld models)

A =

\A = Oj
?
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Anthropics and the value of A

Basic idea:

e When A or radiation dominates the universe structure (i.e.
galaxies) cannot form
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Anthropics and the value of A

Basic idea:

e When A or radiation dominates the universe structure (i.e.
galaxies) cannot form
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Anthropics and the value of A

Basic idea:

e When A or radiation dominates the universe structure (i.e.
galaxies) cannot form

e Can we input that data that we have cosmic structure and
predict the (very small) value of A? (Life?!)

 To do this one requires:
1) A theory with an ensemble of values of A
2) A way to quantify “having structure” sufficiently
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Anthropics and the value of A

Basic idea:

When A or radiation dominates the universe structure (i.e.

galaxies) cannot form

Can we input that data that we have cosmic structure and

predict the (very small) value of A? (Life?!)

To do this one requires:

1) A theory with an ensemble of values of A

2) A way to quantify “having structure” sufficiently
Weinberg used some simple choices for 1) and 2) and
“predicted” a value of A in 1987 similar to the value discovered
~10 years later.
Since then string theorists have argued that the string theory
landscape delivers a suitable ensemble of A's (Bousso &
Polchinski)
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Comment on how we use
knowledge ("A" word!)

Total knowledge about
the universe—>

Input
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Further comments on anthropics:

e Replace “life” with more humble “correlations” and one
has a commonplace part of physics (non-controversial)
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analysis
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anthropics:

1) A theory with an ensemble of values of A

2) A way to quantify “having structure” (or alternative condition)
sufficiently

Can get very different answers depending
on how these ingredients are realized
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Can get very different answers depending
on how these ingredients are realized

e Use "entropy production weighting” (Causal Entropic
Principle, Bousso et al)

* Include variability of world lines due to cosmic structure

e Two different behaviors for late time entropy production in
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anthropics:
1) A theory with an ensemble of values of A
2) A way to quantify “having structure” (or alternative condition)
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* In my view the string theory landscape is unlikely to

survive as a compelling example of 1)
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Bounded alternatives to the landscape and eternality

2/10/2016

de Sitter equilibrium cosmology

Does holography imply non “self
reproduction” (= no eternal inflation)?

Causal patch cosmology

Banks-Fischler Holographic cosmology
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“De Sitter Space: The ultimate equilibrium for the universe?

Horizon
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Implications of the de Sitter horizon

] -1
e Maximum entropy S, o A= HXZ :(%j

e Gibbons-Hawking Temperature

* Only a finite volume ever observed

e If A istruly constant: Cosmology as fluctuating
Egm.

e Maximum entropy —— finite Hilbert space of
N Sp Banks & Fischler & Dyson et al.
dimension N =€



Implications of the de Sitter horizon

] -1
e Maximum entropy S, o A= HXZ :(%j

e Gibbons-Hawking Temperature

Ve Only a finite volume ever observed

e If A istruly constant: Cosmology as fluctuating

v Eqm.?

dSE cosmology

v/ Maximum entropy — 5 finite Hilbert space of
N Sp Banks & Fischler & Dyson et al.
dimension N =€
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Equilibrium Cosmology
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Fluctuating from dSE to inflation:

 The process of an inflaton fluctuating from late time
de Sittter to an inflating state is dominated by the
“Guth-Farhi process”

 A“seed” is formed from the Gibbons-Hawking
radiation that can then tunnel via the Guth-Farhi
instanton.

e Rate is well approximated by the rate of seed
formation: LY m,

e Seed mass:
m, = p, (cH ,—1)3 = 0.0013kg [



Fluctuating from dSE to inflation:

 The process of an inflaton fluctuating from late time
de Sittter to an inflating state is dominated by the
“Guth-Farhi process”

 A“seed” is formed from the Gibbons-Hawking
radiation that can then tunnel via the Guth-Farhi

instanton.
e Rate is well approximated by the rate of seed
formation: LY m,

e Seed mass: y N
e (10*°GeV )
m, = p, (cH,*)" 5(0.0013kg}
P

Small seed can produce an entire universe =»

”

Evage “Boltzmann Brain” problem
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Dark Energy:

current theoretical issues and progress toward future
experiments

A. Albrecht
UC Davis

PHY 262
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95% of the cosmic matter/energy iIs a mystery.
It has never been observed even in our best
laboratories

Ordinary Matter
(observed in labs)

Dark Matter

Dark Energy (Gravitating)

(accelerating)
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American Association for the
Advancement of Science

,,*:"i'l-'il.-'l.'i' DORN'T WE KNOWE

1.


http://www.sciencemag.org/index.dtl
http://www.sciencemag.org/index.dtl

Science : —
C AlAaas American Association for the
Advancement of Science

THE QUESTIONS

The Top 25

Eszays by our news staff on 25 hig
gquestions facing science over the next

= YWhat |5 the Liniverse Made OF7

cd WHAT DON'T WE KNOW? = Whatis the gical Basis of
-i Conscioushess®?
' = Why Do Humans Have So Few Genes?
= To'WWhat Extent Are Genetic Variation and
FPersonal Health Linked?
..at the moment’ the nature Of = Can the Laws of Physics Be Linified?
dark energy IS arguably the = How Much Can Human Life Span Be
. . . . Extended?
mu rkl est q uestion In p hyS ICS--an d = What Contrals Organ Regeneration?
the one that, when answered, > How Can a Skin Cell Become a Nerve
SN O : Cell?
I" "Jty Sﬂed the most Ilg ht = Howe Dioes a Single Somatic Cell Become
aWhole Plant?



http://www.sciencemag.org/index.dtl
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“Right now, not only for
cosmology but for
elementary particle theory,
this is the bone in our
throat.” - Steven Weinberg

“This Is the biggest
embarrassment in
theoretical physics”
- Michael Turner

“... Maybe the most

fundamentally mysterious
thing In basic science.”
- Frank Wilczek

PHY 262 Dark Energy; A.
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“Basically, people
don’t have a clue as
to how to solve this
problem.” - Jeff
Harvey

“... would be No. 1
on my list of things

to figure out.”
- Edward Witten
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QUANTUM UNIVERSE

THE REVOLUTIONIN21STCENTURY PARTICLE PHYSICS




Questions that describe the current excitement
and promise of particle physics.

HOW CAN WE SOLVE THE MYSTERY OF
DARK ENERGY?

QUANTUM UNIVERSE

016  THE REVOLUTHOR] RAFEE@ENMIYREHPARTICLE PHYSICS 66



http://www.interactions.org/quantumuniverse/qu/questions/q2.html

“Most experts believe that nothing short of a revolution in our
understanding of fundamental physics will be required to
achieve a full understanding of the cosmic acceleration.”

Dark Energy Task Force (DETF) astro-phioso9s91
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REVEALING THE HIDDEN NATURE OF ASTROPART'%ELTLELC?—-.?

SPACE AND TIME

Charting the Course for Elementary Particle Physics

Committee on Elementary Particle Physics in the 21st Century
Board on Physics and Astronomy

Division on Engineering and Physical Sciences

(EPP 2010)  NATIONAL RESEARCH COUNCIL

OF THE NATIONAL ACADEMIES

Connecting
Quafkg e NASA's Beyond Einstein Program: An Architecture
with the Cﬂﬁmﬂﬂ for Implementation
-l-
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SPACE AND TIME

Charting the Course for Elementary Particle Physics

Committee on Elementary Particle Physics in the 21st Century
Board on Physics and Astronomy

Division on Engineering and Physical Sciences
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OF THE NATIONAL ACADEMIES ASPERA roadmap
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Cosmic acceleration

Accelerating matter is required to fit current data

Supernova Cosmology Project

“Ordinary” non
accelerating
matter
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Cosmic acceleration

Accelerating matter is required to fit current data

Supernova Cosmology Project
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Cosmic acceleration

Accelerating matter is required to fit current data
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“Ordinary” non
accelerating
matter
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Supernova Cosmology Project
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Dark energy appears to be the dominant component of the physical
Universe, yet there is no persuasive theoretical explanation. The
acceleration of the Universe is, along with dark matter, the observed
phenomenon which most directly demonstrates that our fundamental
theories of particles and gravity are either incorrect or incomplete.
Most experts believe that nothing short of a revolution in our
understanding of fundamental physics* will be required to achieve a
full understanding of the cosmic acceleration. For these reasons, the
nature of dark energy ranks among the very most compelling of all
outstanding problems in physical science. These circumstances
demand an ambitious observational program to determine the dark
energy properties as well as possible.

From the Dark Energy Task Force report (2006)
www.nsf.gov/mps/ast/detf.isp, :
*My emphasis
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http://www.nsf.gov/mps/ast/detf.jsp

Dark energy appears to be the dominant component of the physical
Universe, yet there is no persuasive theoretical explanation. The
acceleration of the Universe is, along with dark matter, the observed
phenomenon which most directly demonstrates that our fundamental
theories of particles and gravity are either incorrect or incomplete.
Most experts believe that nothing short of a revolution in our
understanding of fundamental physics* will be required to achieve a
full understanding of the cosmic acceleration. For these reasons, the
nature of dark energy ranks among the very most compelling of all

outstanding problems in phys DETE = a HEPAP/AAAC
demand an am.bitious obser subpanel to guide planning of
energy properties as well as | fture dark energy experiments

From the Dark Energy Task Force report (2006)
www.nsf.gov/mps/ast/detf.isp, :
*My emphasis
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http://www.nsf.gov/mps/ast/detf.jsp

This talk
Part 1:

A few attempts to explain dark energy
- Motivations, problems and other comments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2

Planning new experiments
- DETF

- Next questions

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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Some general issues:

Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

a A7G A
e e 3p)+ 2
=g (P8R

Positive acceleration clearly requires

« W=p/p<-1/3] (unlike any known constituent of the
Universe) or

e a non-zero cosmological constant or

 an alteration to General Relativity.
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Some general issues:

Numbers:

» Today, o NS 107 M ;,1 = (10_3 eV )4

 Many field models require a particle mass of

m, <10~*eV =~ H,

2/10/2016

from

272
MMz = ppe
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Some general issues:

Numbers:

RN
4
» Today, OPoe %10_120}\4 é = (10_3 eV )
N

- Many field medels r7/quire ap

Icle mass of

272
MMz = ppe

Q>

Where do\&he/se/come from and how are they
protected from quantum corrections?

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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Some general Issug

Properties:

Solve GR for the sca

Two “familiar” ways to achieve
acceleration:

1) Einstein’s cosmological constant
and relatives (w=-1)

2) Whatever drove inflation:
Dynamical, Scalar field?

ation clearly requires

w=p/p<-1/3
lverse) or

unlike any known constituent of the

e a non-zero cosmological constant or

 an alteration to General Relativity.
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Some general issues:

Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

a A7G A
e e 3p)+ 2
=g (P8R

Positive acceleration clearly requires

« W=p/p<-1/3] (unlike any known constituent of the
Universe) or

e a non-zero cosmological constant or

 an alteration to General Relativity.
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Specific ideas: i) A cosmological constant | A

* Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

»\Vacuum energy problem (we’ve gotten
“nowhere” with this)

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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Specific ideas: 1) A cosmological constant

e Nice “textbook” solutions BUT

A

* Deep problems/impacts re fundamental physics

» The string theory landscape (a radically

different idea of what we mean by a fundamental

theory)

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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Specific ideas: 1) A cosmological constant

e Nice “textbook” solutions BUT

A

* Deep problems/impacts re fundamental physics

» The string theory landscape (a radically

different idea of what we mean by a fundamental

theory)

“Theory of Everything”

:

“Theory of Anything”

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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Specific ideas: 1) A cosmological constant

e Nice “textbook” solutions BUT

A

* Deep problems/impacts re fundamental physics

» The string theory landscape (a radically

different idea of what we mean by a fundamental

theory)

Not exactly

a cosmological
constant

PHY 262 Dark Energy; A. Albrecht
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Specific ideas: i) A cosmological constant | A

 Nice “textbook” solutions BUT
* Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon =» Finite Entropy

Bankegotsischler, SusskindpAve& S« lare@icA. Albrecht



"De Sitter Space: The ultimate equilibrium for the
universe?

Horizon

\

ScA=H*=A"

Quantum effects: Hawking Temperature

/87ZG
T=H= TIODE
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"De Sitter Space: The ultimate equilibrium for the
universe?

Horizon

\

ScA=H?*=A"

Quantum effects: Hawking Temperature

- - L1 87Z-G
Does this imply (via “S=InN“) | 3 EpE

a #nikeHilbert space ot glaysico®oy: A Albregit, o Fischler 93




Specific ideas: 1) A cosmological constant

e Nice “textbook” solutions BUT

A

e Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon = Finite Entropy =

Equilibrium Cosmology

% %% 0807 0 ) - BRI
tE el e (W | o s,

S ==

Rare

Fluctuation

J

Dyaonoisleban & SusskineHye8obadrizae EC Albrecht




Specific ideas: i) A cosmological constant | A

* Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon = Finite Entropy =
Equilibrium Cosmology

S ==

Rare

% Fluctuation

-- > [EA ] [ o

> ° “Boltzmann’s Brain” ?
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Specific ideas: i) A cosmological constant | A

* Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon = Finite Entropy =
Equilibrium Cosmology

S ==

Rare

AR A \fa B0 ’* Fluctuation

Qysongitleban & Susskﬂﬂ%ﬂ%‘é@@ ASingeep conflict with

observation




Specific ideas: i) A cosmological constant | A

* Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon = Finite Entropy =
Equilibrium Cosmology

S ==

Rare

AR A \fa B0 ’* Fluctuation

@moiéleban & Susskingny BSHRIGHILE AS\indeep conflict with ¢,
observation (resolved by landscape?)




Specific ideas: 1) A cosmological constant

A

e Nice “textbook” solutions BUT

e Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon = Finite Entropy =

Equilibrium Cosmology

S ==

Rare

Fluctuation

| [

Vi | = | g

This picture forms a nice
foundation for inflationary

Dysonoileban & Susskin@&aﬁ@qx@@@nﬂology 98




Specific ideas: i) A cosmological constant | A

* Nice “textbook” solutions BUT
e Deep problems/impacts re fundamental physics

» De Sitter limit: Horizon = Finite Entropy =
Equilibrium Cosmology

S ==

Rare

o, % ) (*8iafre | Fluctuation

Perhaps saved from this

| discussion by instability of
De Sitter space (Woodard et
“Enero ;érﬁlbrecht 99




Specific ideas: i) A cosmological constant | A

e Nice “textbook” solutions BUT

* Deep problems/impacts re fundamental physics

/

A is not the “simple option”

2/10/2016 PHY 262 Dark Energy; A. Albrecht 100



Some general issues:

Alternative Explanations?:

Is there a less dramatic explanation of the data?

2/10/2016 PHY 262 Dark Energy; A. Albrecht 101



Some general issues:

Alternative Explanations?:

Is there a less dramatic explanation of the data?

For example is supernova dimming due to
 dust? (Aguirre)
o y-axion interactions? (Csaki et al)

« Evolution of SN properties? (Drell et al)

Many of these are under increasing pressure from data, but

SghSKepticism is chNcally, ImRartant. .. 102



Some general issues:

Alternative Explanations?:

Is there a less dramatic explanation of the data?

Or perhaps
* Nonlocal gravity from loop corrections (Woodard & Deser)

e Misinterpretation of a genuinely inhomogeneous universe
(ile. Kolb and collaborators)

2/10/2016 PHY 262 Dark Energy; A. Albrecht 103



Specific ideas: 1) A scalar field (“Quintessence”)
» Recycle inflation ideas (resurrect A =0 dream?)

e Serious unresolved problems

» Explaining/ protecting |m, <10™"eV » H,

> 5! force problem
» Vacuum energy problem
» What is the Q field? (inherited from inflation)

» Why now? (Often not a separate problem)

2/10/2016 PHY 262 Dark Energy; A. Albrecht 104



Specific ideas: 1) A scalar field (“Quintessence”)

Inspired by Dinflation ideas (resurrect A =0 dream?)

e Serious unresolved problems

2/10/2016

> Explaining/ protecting |m, <10™eV ~ H,

> 5! force problem
» Vacuum energy problem
» What is the Q field? (inherited from inflation)

» Why now? (Often not a separate problem)
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Specific ideas: 1) A scalar field (“Quintessence”)

» Recycle inflation ideas (resurrect A =0

e Serious unresolved problems

> Explaining/ protecting |m_, <10~'eV ~ H
Q 0

> 5! force problem
» Vacuum energy problem
» What is the Q field? (inherited from inflation)

» Why now? (Often not a separate problem)
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Learned from inflation: A slowly rolling (nearly)
homogeneous scalar field can accelerate the universe

$+3Hp=-V'

12
Wzﬁz—l+¢—
Jo, Vv
| >
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Learned from inflation: A slowly rolling (nearly)
homogeneous scalar field can accelerate the universe

p+3Hp=-V' Dynamical

, %

v V 4

V

Eﬁiﬁ?wwww
L
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Learned from inflation: A slowly rolling (nearly)
homogeneous scalar field can accelerate the universe

$+3Hg=-V' Dynamical

, %

v 7/

V

Eﬁwwwww _—

Rolling scalar field dark ene gy ,!,,,

2/110/20 PLHY 262 DA
Z1 92010 T z20zZoa

9 qumtessence

[HEY

©




Some quintessence potentials

Exponential (Wetterich, Peebles & Ratra)

PNGB aka Axion (Frieman et al)

Exponential with prefactor (AA & Skordis)

Inverse Power Law (Ratra & Peebles, Steinhardt et al)
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Some quintessence potentials
Exponential (Wetterich, Peebles & Ratra)
V(p)=V,e ™
PNGB aka Axion (Frieman et al)
V(@) =V,(cos(p/ A)+1)
Exponential with prefactor (AA & Skordis)

V(g)=Vo(z(p-B) +5)e

Inverse Power Law (Ratra & Peebles, Steinhardt et al)
m (94

Vip)=V, (_j
@
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Stronger than
average

The potentials

Exponential (Wetterich, Peebles & Ratra) eIl 1iloJ R
V(@) =V e Interest
0

PNGB aka Axion (Frieman et al)

V(@) =V,(cos(p/ A)+1)
Exponential with prefactor (AA & Skordis)
V(o) =Vo(;c(<0—ﬂ)2 +5)e‘*‘”

Inverse Power Law (Ratra & Peebles, Steinhardt et al)

V(p) =V, (mj
®

2/10/2016 PHY 262 Dark Energy; A. Albrecht 112




w(a)

2/10/2016

...they cover a
variety of behavior.

0.5 |
— PNGB
——EXP

-0.6¢ —IT -
—AS

0.7 .

0.8 .

-0.9 /\ -

5.2 0.4 0.6 0.8 1

a

a = Piooshnak Bealer faledor” = time
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Dark energy and the ego test

2/10/2016 PHY 262 Dark Energy; A. Albrecht 114



Specific ideas: Ii) A scalar field (“Quintessence”)

e lllustration: Exponential with prefactor (EwP)
models:

V(p) =V, ((9—B) + Alexp(-p2)
AA & Skordis 1999

http://arxiv.org/abs/astr
0-ph/9908085

» All parameters O(1) in Planck units,

» motivations/protections from extra dimensions &

guantum gravity Burgess &

collaborators

(Z A=.0056 A1=8 V,=1
/1072016 PHY 262 Dark Energy; A. Albrecht 115


http://arxiv.org/abs/astro-ph/9908085

Specific ideas: ii) A scalar field (*Ouintessence™)

« lllustration: Exponential { V ()]
models:

V() =vo((¢— B)’ +A)exp

» All parameters O(1) |

5o

> motivations/protectic 4
guantum gravity

Burgess &
collaborators

(Z A=.005 A=8 V,=1
/1072016 PHY 262 Dark Energy; A. Albrecht AA & Skordis 1999116



Specific ideas: ii) A scalar field (*Ouintessence™)

« lllustration: Exponential { V ()]
models:

V() =vo((¢— B)’ +A)exp

» All parameters O(1) |

5o

> motivations/protectic 4
guantum gravity

Burgess &
collaborators

(Z A=.005 A=8 V,=1
/1072016 PHY 262 Dark Energy; A. Albrecht AA & Skordis 1999117



Specific ideas: 1) A scalar field (“Quintessence”)

e lllustration: Exponential with prefactor (EwP)

models:
1ﬂ\/\ —Qr
—Q
0.5} M m
= Oo4= — —Ww
-
-0.5¢
_1J A
-1.5 :
10°° 10°

2/10/2016

PHY 262 &k Energy; A. Albrecht
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Specific ideas: 1ii) A mass varying neutrinos
(“MaVaNs”)

_ Faradon, Nelson & Weiner
* EXxploit

o s -3
e |SSuUes

» Origin of “acceleron” (varies neutrino
mass, accelerates the universe)

Afshordi et al 2005

» gravitational collapse |
Spitzer 2006
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Specific ideas: 1ii) A mass varying neutrinos
(“MaVaNs”)

_ Faradon, Nelson & Weiner
* EXxploit

o s -3
e |SSuUes

» Origin of “acceleron” (varies neutrino
mass, accelerates the universe)

Afshordi et al 2005
Spitzer 2006

» gravitational collapse
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Specific ideas: Iii) A mass varying neutrinos
(“MaVaNs”)

_ Faradon, Nelson & Weiner
* EXxploit

1/4 -3
e |Ssues

» Origin of “acceleron” (varies neutrino
mass, accelerates the universe)

Afshordi et al 2005
Spitzer 2006

» gravitational collapse
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Specific ideas: Iv) Modify Gravity

* Not something to be done lightly, but given our confusion
about cosmic acceleration, well worth considering.

 Many deep technical issues

e.g. DGP (Dvali, Gabadadze and Porrati)

Charmousis et al

2/10/2016 PHY 262 Dark Energy; A. Albrecht 122



Specific ideas: Iv) Modify Gravity

* Not something to be done lightly, but given our confusion
about cosmic acceleration, well worth considering.

 Many deep technical issues

e.g. DGP (Dvali, Gabadadze and Porrati)

Charmousis et al

See “Origins of Dark Energy” meeting
May 07 for numerous talks
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2/10/2016 PHY 262 Dark Energy; A. Albrecht




2/10/2016 PHY 262 Dark Energy; A. Albrecht




This talk
Part 1:

A few attempts to explain dark energy
- Motivations, Problems and other comments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2

Planning new experiments
- DETF

- Next questions
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Solve GR for the scale factor a of the Universe (a=1 today): Erlg';nF
a e A
—=———(p+3P) + -

. 5 (P )+ 3

Positive acceleration clearly requires (w= p/p <-1/3| unlike any known
constituent of the Universe, or a non-zero cosmological constant -
or an alteration to General Relativity.

Kk

a2

The second basic equation is (aJZ 872G, p +§
3

a 3

.\ 2
Today we have HSZ(EJ ZS”GTN/’OJF%_k
a
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Hubble Parameter

We can rewrite this as

1:8ﬂGN2'0°+ AZ— kzzQ +Q, +Q,
3H, 3H,; H; P

To get the generalization that applies not just now (a=1), we need
to distinguish between non-relativistic matter and relativistic matter.
We also generalize A to dark energy with a constant w,

not necessarily equal to -1.

non-rel. matter curvature

-\ 2
H?(a) = (9) = H} [Qma,—?’ + Qa7 + Qa2 + Qxa_?’(”"“)]
a

| T

rel. matter Dark Energy
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What are the observable quantities?

Expansion factor a is directly observed by redshifting of emitted
photons: a=1/(1+z), z is “redshift.”

Time is not a direct observable (for present discussion). A measure
of elapsed time is the distance traversed by an emitted photon:

0 = ds® = c?dt? — a?(t)[dr® + r2S:i(r/ro)d*Q] =
t / z /

° cdt cdz

wz) alt’)  Jo H(2')

This distance-redshift relation is one of the diagnostics of dark energy.
Given a value for curvature, there is 1-1 map between D(z) and w(a).

Distance is manifested by changes in flux, subtended angle, and sky
densities of objects at fixed luminosity, proper size, and space density.
These are one class of observable quantities for dark-energy study
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Another observable guantity:

The progress of gravitational collapse is damped by expansion of the
Universe. Density fluctuations arising from inflation-era quantum
fluctuations increase their amplitude with time. Quantify this by the
growth factor g of density fluctuations in linear perturbation theory.
GR gives:

30, HE
2a3

j—2Hg=41Gppg = g

This growth-redshift relation is the second diagnostic of dark energy.
If GR is correct, there is 1-1 map between D(z) and g(z).

If GR Is incorrect, observed qguantities may fail to obey this relation

Growth factor is determined by measuring the density fluctuations in
nearby dark matter (1), comparing to those seen at z=1088 by WMAP.

2/10/2016 PHY 262 Dark Energy; A. Albrecht




What are the observable quantities?

- Expansion History

TTTT T T T T TTTT

MNo Dark Energy
A, CMB-matched
w=-0.9, CMB-matched

No Dark Energy

=1.02 — A CMB-matched .
100k - g w=-0.9, CMB-matched

Ol i o

i) [ < 17 :

10 E ‘% \H'_ ]

; ] =.0.98 | .

[ Growth History % i :

1 el | L o) o ) H T E N R .

1 10 _ 100 1000 0 1 2 3 4

Redshift (1+z) Redshift (z)
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e Exploding white dwarf
stars: mass exceeds
Chandrasekhar limit.

 If luminosity is fixed,
received flux gives
relative distance via
Qf=L/4nD>.

 SNIla are not
homogeneous events.
Are all luminosity-
affecting variables
manifested in observed
properties of the
explosion (light curves,

spectra)?
2/10/201(!3 )

PHY 262 Dark EnergyGO@®RS Survey (Riess et al) 132



W (=5 log(Distance}))

o H3T Discoverad

o Ground Discoverad

0.5 1.5

2/10/20.316 5
qo

2.0

-0.5 PHY@@ Dark Energy; A. AIbrecht

Alm-M) (mag)
=
S
I PO R
I H
| —gt
| —mi—| —e—
—’—
__._
!
I
—o—
|
i
I
_‘_.'_
[
I

Gonstantﬁ.oaeleranon O

-, dgldz=0 (i=0) 3

O Sgeiieegmss=s==cfaai_g
;E; M?‘?— - : _.,_.E:onstant Deceleratrgn 'Eln'-'? --------
BELT gggg;[é?gﬁor@Dgceleraﬂon Q= dofdz=++ Uqf-;:_lg_:ggq:—cy_
.mf— __ Acceleration+Jerk, gy=-, j;=++ E
Example of SN data:
HST GOODS Survey (Riess et al)
Clear evidence of acceleration!
aoao
o = — & = [Q + Qx (1 + 3w)]
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Riess et al astro-ph/0611572

- I HST Discovered
-~ Ground Discovered

2/10/2016

45

- Binned Golddata ~ aust
05F W

-

-

I : | T — _ _.___' -_.I- ""!'_'.'_:f_'.'.-n-
05 1 %
: Celergy n-
=0 5

== 0,=0.29, Q,=0.71

—
L g2t guolution

pure acceleration: q(z)=-0.5

00 === e ___..__I___;______;__.:___'_'_ti:_.-"

0.0 0.5 1.0 1.5

0.5 1.0 1.5

PHY 262 Dark Energy; A. Albrecht
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Dark Enerqgy witl{ Baryon Acoustic Oscillations

«Acoustic waves propagate in the baryon- o Y

B0 -

photon plasma starting at end of inflation. . BAO seen in CMB 1T Cross Pawer

| “E  (WMAP) [ L ”:w“ "
*When plasma combines to neutral ool T e

hydrogen, sound propagation ends.

Z

STTINTETRRAREL

=
o=

-
-
=

«Cosmic expansion sets up a predictable
standing wave pattern on scales of the / v -.
Hubble length. The Hubble length oot B \A,
(~sound horizon ry, ~140 Mpc is imprinted \ ' '
on the matter density pattern. 200

B 1000 (RS
= =
f}
“ng

Identify the angular scale subtending r,
then use 6.=r./D(z)

*WMAP/Planck determine r, and the
distance to z=1088.

s2¢(s)

*Survey of galaxies (as signposts for dark ’ - BAO seen in SDSS
matter) recover D(z), H(z) at 0<z<5. -s0 - Galaxy correlations

F (Eisensteinetal) E
*Galaxy survey can be visible/NIR or 21- =19 2560 80 100 200

Cm%‘?{%&i@n PHY 262 Dark Energy A. AlerCh‘BmO\HDg Separation (h™! Mpc) 135



Dark Energy Wi@xy ClusteD

*Galaxy clusters are the largest
structures in Universe to undergo
gravitational collapse.

*Markers for locations with
density contrast above a critical
value.

*Theory predicts the mass
function dN/dMdV. We observe
dN/dzd.2.

*Dark energy sensitiui

[aV/dQdz w

Mass function is very sensitive
to M; very sensitive to g(z).

*Also very sensitive to mis-
estimation of mass, which is not

Cluster method probes both D(z) and g(z)

dweaty®bserved. PHY 262 Dark Energy; A. Albrecht 136



taF1®mig® 1 ®p® &7 14bogmy 5o

30 GHz View
(Carlstrom et al)
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Galaxy Clusters from ROSAT

-2

From Rosati et al, 1999:

—2 i | T T T T T T T T | T T T T | I_
J— ~ ] -4
e 4 o 1,=0.3 1
o L 0,=0.7 -
B : =
3 i 1 w 6
S 6 [ - o
s 8—— 0,=1.18 =
L i_.l "B
3 [~ 0,=0.97 £
510 [ 0,=0.77 i 3
w b . =
s [ | | | /] 2 8
_12 1 1 1 | | | | | | | | | | E
42 43 44 45
log L, [0.5-2.0 keV] (erg s°')
-12

ROSAT cluster surveys yielded ~few
100 clusters in controlled samples.

-14

Future X-ray, SZ, lensing surveys
211072016 project few x 184Gtk Albrecht

X-ray surveys

42 43 44 45
log L, [0.5-2.0 keV] (erg s-!)
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Dark Energy with @ravitational Le@

Mass concentrations in the

Universe deflect photons from ﬁ'ﬁl
distant sources. amtGHbE
4 —
*Displacement of background L %fff”’ o
Images is unobservable, but their @—f-f“"”f Ty
distortion (shear) is measurable. ) < = :
D

Extent of distortion depends 4;-M D.s
upon size of mass concentrations /ﬂ 0= 7 D.
and relative distances. We observe ths deflecton angle i Ao

[more precisely, gradients of the o
-Depth information from redshifts. Cosmoigly changes
Obtaining 108 redshifts from e coners

optical spectroscopy is infeasible.
“photometric” redshifts instead.

-
Lensing method probes both (D(é) )an{i g(z)

2/10/2016 PHY 262 Dark Energy; A. Albrect /" /
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Dark Energy With@ Gravitational Len@

L]

o ® _ @ @ ©
© ©9 o ‘0 ©
® ® oo —>'@ ()9

o 0 © ® e

e o L 69

@
True Background Lenged Image
-
-
L 8 ®
@ ﬂ,-f o Y ® % @ =
B oa ) ==
Q LTS —>'m ()u
“o f N Y@ Q
o o /, o
Trua Background Lensad Image

In weak lensing, shapes
of galaxies are measured.
Dominant noise source is
the (random) intrinsic
shape of galaxies. Large-
N statistics extract lensing
influence from intrinsic

2/10/2016 PHY 262 Dark Energy; A. Albrecht NOIS€- 140




2/10/2016




Choose your background photon source:

Faint background galaxies:

Use visible/NIR imaging to
determine shapes.

Photometric redshifts.

Photons from the CMB:

Use mm-wave high-
resolution imaging of CMB.

All sources at z=1088.

21-cm photons:

Use the proposed Square
Kilometer Array (SKA).

Sources are neutral H in
regular galaxies at z<2, or
Y 26DaxktBhehgyess@iraeht

Hoekstra et al 2006:
FTTrr T T T

10t

(M2,5(6)
i

[ |
~1%10°% H o I

g

*s

—{§§-§-§!—= o800

=

1 T

10
f|aremin |

(lensing not yet detected)

(lensing not yet detected)
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Q: Given that we know so little about the cosmic
acceleration, how do we represent source of this

acceleration when we forecast the impact of future

experiments?

Consensus Answer: (DETF, Joint Dark Energy Mission
Science Definition Team JDEM STD)

 Model dark energy as homogeneous fluid = all

Information contained In

w(a)= p(a)/ p(a)

 Model possible breakdown of GR by inconsistent
determination of w(a) by different methods.

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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Q: Given that we know so little about the cosmic
acceleration, how do we represent source of this
acceleration when we forecast the impact of future
experiments?

Consensus Answer: (DETF, Joint Dark Energy Mission
Science Definition Team JDEM STD)

 Model dark energy as homogeneous fluid = all
iInformation contained In W(a) = p(a)/p(a)

 Model possible breakdown of GR by inconsistent
determination of w(a) by different methods.

Also: Std cosmological parameters including
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Q: Given that we know so little about the cosmic
acceleration, how do we represent source of this

acceleration when we forecast the impact of future

experiments?

Consensus Answer: (DETF, Joint Dark Energy Mission
Science Definition Team JDEM STD)

 Model dark energy as homogeneous fluid - all

Information contained In

w(a)=p(a)/p(a)

 Model possible breakdown of GR by inconsistent
determination of w(a) by different methods.

Also: Std cosmological parameters including
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Recall:

sorrre—general 1ISSug

Properties:

Solve GR for the sca

Two “familiar” ways to achieve
acceleration:

1) Einstein’s cosmological constant
and relatives (w=-1)

2) Whatever drove inflation:
Dynamical, Scalar field?

ation clearly requires

w=p/p<-1/3
lverse) or

unlike any known constituent of the

e a non-zero cosmological constant or

 an alteration to General Relativity.
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/95% CL contour

w(a) = w, +w, (1-a)

(DETF parameterization... Linder)
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The DETF stages (data models constructed for each

one)
Stage 2: Underway

Stage 3: Medium size/term projects

Stage 4: Large longer term projects (ie JDEM, LST)

DETF modeled

* SN

*\Weak Lensing
*Baryon Oscillation

*Cluster data
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DETF Projections

Stage—IIl figure—of—merit (normalized to Stage-II)

20

.| . - 1

Figure of merit Improvement over
Stage 2 =

BAO BAO CL SN SN WL ALL
photo apect photo photo spect photo photo
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DETF Projections

Stage—IV figure—of—merit (normalized to Stage-II)

20

[—
o O O
1 |

Figure of merit Improvement over
Stage 2 =
o

E = -
M
1 BAO BAO SN WL WL ALL ALL
SKA LST LST SKA LT SKA LST
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20

o

Y

Figure of merit Improvement over
Stage 2 = _
0J

2/10/2016

DETF Projections

Stage—IV figure—of —merit (normalized to Stage-II)

Gy @

BAO

CL SN WL
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Figure of merit Improvement over

2/10/2016

Stage 2 =

20

10

I

DETF Projections

Stage—IV ligure—of—merit (normalized to Stage-II)

o o

- Ground + Space

SN-S BAOQ-5 CL-5 SN+WL-8
BAO+WL-LST SN+WL-LST ALL-LST BAO-IlIs
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A technical point: The role of correlations

-0.50 1 I I T 1 T | I j =
-0.75 -
Technique #2

G_1|Dﬂl_ —
=

=125 -

Technique #1
=1.90 1 | | | 1 1 | | |
=20 =16 =12 =08 =04 0.0 0.4 0.8 1.2 1.6 2.0
W
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From the DETF Executive Summary

One of our main findings is that no single technigue can
answer the outstanding questions about dark energy:
combinations of at least two of these technigues must be
used to fully realize the promise of future observations.

Already there are proposals for major, long-term (Stage V)
projects incorporating these techniques that have the
promise of increasing our figure of merit by a factor of ten
beyond the level it will reach with the conclusion of current
experiments. What is urgently needed is a commitment to
fund a program comprised of a selection of these projects.
The selection should be made on the basis of critical
evaluations of their costs, benefits, and risks.
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The Dark Energy Task Force (DETF)

= Created specific simulated data sets (Stage 2, Stage 3, Stage
4)

=>» Assessed their impact on our knowledge of dark energy as
modeled with the wO-wa parameters

w(a)=w,+w,(1-a)
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The Dark Energy Task Force (DETF)

= Created specific simulated data sets (Stage 2, Stage 3, Stage
4)

=>» Assessed their impact on our knowledge of dark energy as
modeled with the wO-wa parameters

Followup questions:

— In what ways might the choice of DE parameters biased the
DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

2,Jigwats the DOE/ESA/NARAS sigieRYWArkingfzroup looking at

these questions?

156



The Dark Energy Task

NB: To make concrete
comparisons this work ignores
various possible improvements to the
DETF data models.

=> Created specific si
4)

=» Assessed their |
modeled with the w

(see for example J Newman, H Zhan et al

Followup question & Schneider et al)

— In what ways might the
DETF results?

> What impact c@se data sets ha els (vs

abstract parameters)?
—> To what extent can@e data sets d@ gscrimina DETF >

between specific DE models?

2 i, is the DoE/ESA/NMé%p%WqIﬂi@gcﬁroup looking at 157
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The Dark Energy Task

NB: To make concrete
comparisons this work ignores
various possible improvements to the
DETF data models.

=> Created specific si
4)

=» Assessed their |
modeled with the w

(see for example J Newman, H Zhan et al

- & Schneider et al)
w 10N
Followup questio g
—> In what ways might the Ground/Space synergies

DETF results?

> What impact c@se data sets ha els (vs

abstract parameters)?
—> To what extent ca@ata sets d@ gscrimina DETF >

between specific DE models?
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The Dark Energy Task Force (DETF)

= Created specific simulated data sets (Stage 2, Stage 3, Stage
4)

=>» Assessed their impact on our knowledge of dark energy as
modeled with the wO-wa parameters

Followup questions:

— In what ways might the choice of DE parameters biased the
DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

2,Jigwats the DOE/ESA/NARAS sigieRYWArkingfzroup looking at

these questions?
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Summary

- In what ways might the choice of DE parameters have skewed
the DETF results?

A: Only by an overall (possibly important) rescaling

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

A: Very similar to DETF results in wO-wa space

To what extent can these data sets deliver discriminating power
between specific DE models?

A:
« DETF Stage 3: Poor
2i00kbs TF Stage 4: Mayainis enggeedledai: within reach (AA)1eo



How good is the w(a) ansatz?

w(a) =w, +w, (1-a)

>

wO-wa can only do these

Sample w(z) curves for the PNGB models

) )
w_l&
o o5 i 15 2 |
Sample w(z) curves for the EwP models > DE mOdels can dO th|S
1 | (and much more)
=0
-1
o o5 1 15 2/

,
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How good is the w(a) ansatz?

SamplteW(z) curves in W_=w
0 'a

0 0.5 1 1.5

Sample w(z) curves for the P

0 0.5 1 1.5

Sample w(z) curves for the EwP model

w(a) =w, +w, (1-a)

a can only do these

NB: Better than

(a) = w,

& flat
PDE modetseandoTthis
(and much more)
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Try N-D stepwise constant w(a)

Aw(a)O“ ...................................... N S .. i
1 L L
10° 10" 10° 10"
N Y4
w(a) =-1+Aw(a)=-1+> AwT (a,a,,)
=il

/

N parameters are coefficients of the “top
hat functions” T (ai | am)

AA & G Bernstein 2006 (astro-ph/06082692|. More detailed info can be

) ] A h
f%/llj%z 1a6t http://www.phyS|gsﬁﬂéaé\?laér.%tcnf/&yoémo roe((::]yt/albrecht/l\/lorelnfoO6O8218§/



http://arxiv.org/abs/astro-ph/0608269
http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/

Try N-D stepwise constant w(a)

1 l :
AW( a) (o) PR W ———. I - i
12 1 " 0 1
10 10 10 10
N Z
w(a) =-1+Aw(a)=-1+> AwT (a,a,,)
i=1 Used by
Huterer & Turner;
Huterer & Starkman;
o Knox et al;
N parameters are coefficients of the “top Crittenden & Pogosian
hat functions” ( ) Linder; Reiss et al:
T a‘i ’ a‘i +1 Krauss et al
de Putter & Linder;
Sullivan et al

AA & G Bernstein 2006 (astro-ph/06082692|. More detailed info can be

/10/ . ] A h
f%llj%z 1a6t http://www.phyS|gsﬁaéaé\?laér.%tcnf/&yoémo roe((::]yt/albrec:ht/l\/lorelnfoO6082’L((§6/



http://arxiv.org/abs/astro-ph/0608269
http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/

Try N-D stepwise constant w(a)

1
AW(a)O" ............................ Y [ R N - .
_1 L L L R T T T | L L L R T T T |
-2 -1 0 1
10 10 10 o
R =>» Allows greater
w(a) = -1+Aw(a)=-1+ Y AwT (a,a,,) |Vvarety ofw(a)
i1 f behavior
/ => Allows each
] experiment to
N parameters are coetficients of the "top| «nt its best foot
hat functions” T (ai | ai+1) forward”
=>» Any signal
rejects A\
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Try N-D stepwise constant w(a)

1 —
AW(a)O" ............................ Y [ R N - .
_1 L L L N S RN | L L L N S RN | L L L T S S R
-2 -1 0 1
10 10 10 o
R =>» Allows greater
w(a) = -1+Aw(a)=-1+ Y AwT (a,a,,) |Vvarety ofw(a)
=l f behavior
/ => Allows each
] experiment to
N parameters are coetficients of the "top| «t its best foot
hat functions” T (ai | ai+1) forward”

ny signal
| “Convergence” s A
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Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes f; and
corresponding N errors o;

2D illustration:

f, = Axis 11

O,

—

fg = AXIS 2

>
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Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes f; and

corresponding N errors o Principle component
analysis

2D illustration:

>
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Q: How do you describe error ellipsis in ND space?

—

A: In terms of N principle axes f; and
corresponding N errors o;

NB: in general the ﬁs form
2D illustration: a Comp|ete basis:

AW=>Ycf

The C are independently
measured qualities with
errors o.

>
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Q: How do you describe error ellipsis in ND space?

—

A: In terms of N principle axes f; and
corresponding N errors o;

NB: in general the l?is form
2D illustration: a Comp|ete basis:

AW=>Ycf

The ¢ are independem'\
measured qualities with
errors o,

___——

>
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DETF stage 2

Principle Axes

2

Characterizing 9D ellipses by principle axes and

corresponding errors

O; 1
0
1 2 4 5 6 7 8 9
1 T T T T T T T
»—/e“
- ﬁ >©'< ﬁ —6—1
L oF U A4 —F——8— O ﬁ\v\y | 2
- | | | | | | |
:(L).Z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
F a
. _——e—’*’e—& ; —6—4
y —~— 6
- | | | | | | |
%).2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a
1 T T T T T T T
></@\ﬁ —7
2 of \?{; -5 o o | ——s
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Z-=4 z=1.5 z =0.25 z =0

N
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WL Stage 4 Opt
2 B I

Principle Axes

Characterizing 9D ellipses by principle axes and
corresponding errors
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——5
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Characterizing 16D ellipses by principle axes and
corresponding errors

WL Stage 4 Opt
2_

O; 1
0
0 2 4 8 10 12 14 16 18
1
oo TS g Sy || T )
L 0f ——9—=—6— i e o Sy 1l —o—»
) -1
» 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
< a
Q f L /V /
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Stage 2 = Stage 3 = 1 order of magnitude (vs 0.5 for DETF)
Stage 4 Space Stage 4 Ground+Space
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Upshot of N-D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage
vs Stage 3

3) The above can be understood approximatel
terms of a simple rescaling (related to higher
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking,
value of combinations etc).
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Summary

- In what ways might the choice of DE parameters have skewed
the DETF results?

A: Only by an overall (possibly important) rescaling

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

A: Very similar to DETF results in wO-wa space

To what extent can these data sets deliver discriminating power
between specific DE models?

A:
« DETF Stage 3: Poor
200kbsTF Stage 4: Mayainas enégeedledat: within reach (AA)a77
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- |DETF stage 2 [ Abrahamse, AA, Barnard,
& Bozek & Yashar PRD 2008]

0.8l
06720 40 6[9 80 100 120 DETF stage 3
1
>O
0.8l
06720 40 6[? 80 100 120 ,
1_
>O
0.8
2/10/2016 PHY 262 Dark Energy; A. Albrech()

DETF stage 4

. 179

20 40 Gé) 80 100 120



Summary

- In what ways might the choice of DE parameters have skewed
the DETF results?

A: Only by an overall (possibly important) rescaling

- What impact can these data sets have on specific DE models (vs
abstract parameters)?
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To what extent can these data sets deliver discriminating power
between specific DE models?

A:
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Summary

- In what ways might the choice of DE parameters have skewed
the DETF results?

A: Only by an overall (possibly important) rescaling

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

A: Very similar to DETF results in wO-wa space

To what extent can these data sets deliver discriminating power
between specific DE models?

A:
« DETF Stage 3: Poor
200kbsTF Stage 4: Mayagina enégeedledat: within reach (AA)s:




c,/ o,

2/10/2016

mode 2/

DETF Stage 4 ground [Opt]

- PNGB

4 6 8 10 12
mode 1/c
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AW = ZCi f DETF Stage 4 ground [Opt]

- PNGB
0.4_ + Exp
+ lnv. Trac.
0.2 . AS
L 0
I
D
c,/o, T -0.2
&
-0.4
-0.6¢ o “:“«:.m
-0.8¢
0.5 1 1.5
mode 3/c
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The different kinds of curves correspond to different
“trajectories” in mode space (similar to FT’s)

0.5
—PNGB
——EXP
-0.6} —IT
—AS
0.7} ]
©
=
0.8 .
-0.9} /\ -
5.2 0.4 0.6 0.8 1

a
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DETF Stage 4 ground

4r - PNGB
) - Exp.
2 *: * *++ :; * ;: o *: *:w mV TraC

PO, 25 oS ASe

=> Data that reveals a
universe with dark
energy given by “0 “

, will have finite minimum
-4 T “distances” ;(2 to other
quintessence models

mode 2/

5 4 s | = powerful
mode | discrimination is
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- In what ways might the choice of DE parameters have skewed
the DETF results?

A: Only by an overall (possibly important) rescaling
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abstract parameters)?
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Summary

- In what ways might the choice of DE parameters have skewed
the DETF results?

A: Only by an overall (possibly important) rescaling

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

A: Very similar to DETF results in wO-wa space

To what extent can these data se/7/| nteresting contribution\
if; ? : .
between specific DE models” to discussion of Stage 4

IN (if you believe scalar

field modes)
e DETF Stage 3: Poor

yeokbsTF Stage 4: Mayainsi fpémyeediedat: ithin reach (AA)s7




- How is the DoE/ESA/NASA Science Working Group looking at these
guestions?

) Using w(a) eigenmodes

) Revealing value of higher modes
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DoE/ESA/NASA JDEM Science Working Group
=» Update agencies on figures of merit issues
= formed Summer 08

=» finished Dec 08 (report on arxiv Jan 09, moved on to
SCQG)

=» Use w-eigenmodes to get more complete picture
=» also guantify deviations from Einstein gravity

=» For tomorrow: Something new we learned about
(normalizing) modes

2/10/2016 PHY 262 Dark Energy; A. Albrecht
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- How is the DoE/ESA/NASA Science Working Group looking at these
guestions?

) Using w(a) eigenmodes

) Revealing value of higher modes
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This talk
Part 1:

A few attempts to explain dark energy
- Motivations, problems and other comments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2

Planning new experiments
- DETF

- Next questions
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This talk

Part 1:
A few

Deeply exciting physics

- Motivations, problem ments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2

Planning new experiments
- DETF

- Next questions
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This talk
Part 1:

A few attempts to explain dark energy
- Motivations, problems and other comments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2

=>» Rigorous quantitative case for

MEUNIOMIEY “Stage 4” (i.e. LSST, JDEM, Euclid)
- DETH
- Next
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This talk
Part 1:

A few attempts to explain dark energy
- Motivations, problems and other comments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2

=>» Rigorous quantitative case for

MEUNIOMIEY “Stage 4” (i.e. LSST, JDEM, Euclid)

API=E = Advances in combining technigques
- Next
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Part 2
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MEUNIOMIEY “Stage 4” (i.e. LSST, JDEM, Euclid)
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AN = Insights into ground & space
synergies
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This talk

Part 1:
A few

Deeply exciting physics

- Motivations, problem ments

- Theme: We may not know where this revolution is
taking us, but it is already underway:

Part 2 : L
=>» Rigorous quantitative case for

MEUNIOMIEY “Stage 4” (i.e. LSST, JDEM, Euclid)
API=E = Advances in combining technigques

AN = Insights into ground & space
synergies
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END
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How good is the w(a) ansatz?

w(a) =w, +w, (1-a)

>

wO-wa can only do these

Sample w(z) curves for the PNGB models

) )
w_l&
o o5 i 15 2 |
Sample w(z) curves for the EwP models > DE mOdels can dO th|S
1 | (and much more)
=0
-1
o o5 1 15 2/

,
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How good is the w(a) ansatz?

SamplteW(z) curves in W_=w
0 'a

0 0.5 1 1.5

Sample w(z) curves for the P

0 0.5 1 1.5

Sample w(z) curves for the EwP model

w(a) =w, +w, (1-a)

a can only do these

NB: Better than

(a) = w,

& flat
PDE modetseandoTthis
(and much more)
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Try N-D stepwise constant w(a)

Aw(a)O“ ...................................... N S .. i
1 L L
10° 10" 10° 10"
N Y4
w(a) =-1+Aw(a)=-1+> AwT (a,a,,)
=il

/

N parameters are coefficients of the “top
hat functions” T (ai | am)

AA & G Bernstein 2006 (astro-ph/06082692|. More detailed info can be

) ] A h
f%/llj%z 1a6t http://www.phyS|gsﬁﬂéaé\?laér.%tcnf/&yoémo roe((::]yt/albrecht/l\/lorelnf00608582)/
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Try N-D stepwise constant w(a)

1 l :
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N Z
w(a) =-1+Aw(a)=-1+> AwT (a,a,,)
i=1 Used by
Huterer & Turner;
Huterer & Starkman;
o Knox et al;
N parameters are coefficients of the “top Crittenden & Pogosian
hat functions” ( ) Linder; Reiss et al:
T a‘i ’ a‘i +1 Krauss et al
de Putter & Linder;
Sullivan et al

AA & G Bernstein 2006 (astro-ph/06082692|. More detailed info can be

/10/ . ] A h
f%llj%z 1a6t http://www.phyS|gsﬁaéaé\?laér.%tcnf/&yoémo roe((::]yt/albrec:ht/l\/lorelnfoO608585/



http://arxiv.org/abs/astro-ph/0608269
http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/

Try N-D stepwise constant w(a)

1
AW(a)O" ............................ Y [ R N - .
_1 L L L R T T T | L L L R T T T |
-2 -1 0 1
10 10 10 o
R =>» Allows greater
w(a) = -1+Aw(a)=-1+ Y AwT (a,a,,) |Vvarety ofw(a)
i1 f behavior
/ => Allows each
] experiment to
N parameters are coetficients of the "top| «nt its best foot
hat functions” T (ai | ai+1) forward”
=>» Any signal
rejects A\
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Try N-D stepwise constant w(a)

1 —
AW(a)O" ............................ Y [ R N - .
_1 L L L N S RN | L L L N S RN | L L L T S S R
-2 -1 0 1
10 10 10 o
R =>» Allows greater
w(a) = -1+Aw(a)=-1+ Y AwT (a,a,,) |Vvarety ofw(a)
=l f behavior
/ => Allows each
] experiment to
N parameters are coetficients of the "top| «t its best foot
hat functions” T (ai | ai+1) forward”

ny signal
| “Convergence” s A
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Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes f; and
corresponding N errors o;

2D illustration:

f, = Axis 11

O,

—

fg = AXIS 2

>
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Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes f; and

corresponding N errors o Principle component
analysis

2D illustration:

>
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Q: How do you describe error ellipsis in ND space?

—

A: In terms of N principle axes f; and
corresponding N errors o;

NB: in general the ﬁs form
2D illustration: a Comp|ete basis:

AW=>Ycf

The C are independently
measured qualities with
errors o.

>
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Q: How do you describe error ellipsis in ND space?

—

A: In terms of N principle axes f; and
corresponding N errors o;

NB: in general the l?is form
2D illustration: a Comp|ete basis:

AW=>Ycf

The ¢ are independem'\
measured qualities with
errors o,

___——

>
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DETF stage 2

Principle Axes

2

Characterizing 9D ellipses by principle axes and

corresponding errors

O; 1
0
1 2 4 5 6 7 8 9
1 T T T T T T T
»—/e“
- ﬁ >©'< ﬁ —6—1
L oF U A4 —F——8— O ﬁ\v\y | 2
- | | | | | | |
:(L).Z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
F a
. _——e—’*’e—& ; —6—4
y —~— 6
- | | | | | | |
%).2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a
1 T T T T T T T
></@\ﬁ —7
2 of \?{; -5 o o | ——s
_1 | | | | | | |
oinofd1s 3 04 PHY 262 [[@K Energy! A. Albrech 09 !
Z-=4 z=1.5 z =0.25 z =0

N
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WL Stage 4 Opt
2 B I

Principle Axes

Characterizing 9D ellipses by principle axes and
corresponding errors

——1
—0—2
—Vv—3

—6—14
——5
—v— 6

——7
—<—38
—— 9

z-=4

z =0.25

O; 1 - .:
0 1 2 4 6 7
1 T T T T T T
" M:g—;;@>j></‘@< oo o
- | L o —— ¢
_1 | ‘\lv—/‘ | | | |
0.2 0.3 0.4 0.5 0.7 0.8 0.9
fl I /N ﬁ_« /O i
SRS S S
b2 of3 of4 ofs 077 ofs 019
1 '\_'7\ T T T T T T
L or KyAVA\ﬁ /;\ i a
_1 | | | | | |
2nofsdie ©° “* P 2620@K Energy’ A. Albrech 0.9

z

1
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Characterizing 16D ellipses by principle axes and
corresponding errors

WL Stage 4 Opt
2_

O; 1
0
0 2 4 8 10 12 14 16 18
1
oo TS g Sy || T )
L 0f ——9—=—6— i e o Sy 1l —o—»
) -1
» 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
< a
Q f L /V /
Q| Nl g oo ko =86 -
= 1
0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

——7
——8
v — 9

1
onn0/616 2
Z-=4

0.4

z=1.5
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-—(_ “Convergence”
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Qtane 2 Stage 4 Ground
led led 1 3
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100¢ 100 ¢ |:| -
10} |:| 10} |:| I_ I I—
— ] m ]
1 = - . ] 1 1 d':l -I 1 1 1 1 ]
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Stage 4 Space Stage 4 Ground+Space
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1
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pu
JDETFI9D

Qtane 2 Stage 4 Ground

9D (-CL) — 5
ledt led} —
le3} - 1le3t
100k 100} D —
10} — D 10} D 3 (] I

== - -D — , . : 1 - = = I C ]

Stage 2 = Stage 3 = 1 order of magnitude (vs 0.5 for DETF)
Stage 4 Space Stage 4 Ground+Space

led} D led} | —
le3} D le3} H D H
100 ¢ D - D 100§ ]
10} . o = 10} l [] I— . l

Stage 2 _-) Stage 4 =3 orders 0]] fnagnitude (Vs 1 fo—r DETF)




Upshot of N-D FoM:
1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4
vs Stage 3

3) The above can be understood approximately in
terms of a simple rescaling (related to higher
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking,
value of combinations etc).
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Upshot of N-D FoM:
1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4
vs Stage 3

3) The above can be understood approximately in
terms of a simple rescaling (related to higher
dimensional parameter space).
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Upshot of N-D FoM:
1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4
vs Stage 3

3) The above can be understood approximately in
terms of a simple rescaling (related to higher
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking,
value of combinations etc).
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Upshot of N-D FoM:
1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4
vs Stage 3

3) The above can be understood approximately in
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Upshot of N-D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage
vs Stage 3

3) The above can be understood approximatel
terms of a simple rescaling (related to higher
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking,
value of combinations etc).
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Upshot of N-D FoM:
1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4
vs Stage 3

3) The above can be understood approximately in
terms of a simple rescaling (related to higher
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking,
value of combinations etc).

=> A nice way to gain insights into data (real or
Imagined)
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?

A: Only by an overall (possibly important) rescaling
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?

2/10/2016 PHY 262 Dark Energy; A. Albrecht 222



| DETF stage 2

[ Abrahamse, AA, Barnard,
Bozek & Yashar PRD 2008]

0650 40 6[9 80 100 120 DETF stage 3
1_“
>O

0.8!

06— 40 6[? 80 100 120 ,

' DETF stage 4
>o " ‘
0.8!
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(52/3) DETF stage 3

- |DETF stage 2 [ Abrahamse, AA, Barnard,
Bozek & Yashar 2008]

224

0.6 20 40 6[9 80 100 1_
1
>O
0.8
06750 40 6[? 80 100 120 ,
Upshot: '
Story in scalar field parameter 1 R
space very similar to DETF story >° -
in wO-wa space. 0.3
(S2/10)
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?

A: Very similar to DETF results in wO-wa space
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?

Michael Barnard et al arXiv:0804.0413

2/10/2016 PHY 262 Dark Energy; A. Albrecht 228



Problem:

Each scalar field model is defined in its own parameter
space. How should one guantify discriminating power
among models?

Our answer:

= Form each set of scalar field model parameter values,
map the solution into w(a) eigenmode space, the space
of uncorrelated observables.

=» Make the comparison in the space of uncorrelated
observables.
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WL Stage 4 Opt
2 B I

Principle Axes

Characterizing 9D ellipses by principle axes and
corresponding errors

0 1 2 4 5 6 7
1 T T T T T T T
96— —o—1
I efﬁ_’::g; }\e\\\&\e\\@ 4l —o—>
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f K& | ;%Z ‘ o, [AW= 2.¢f
\9_}\9/ !
0.2 073 of4 075 fl = AXIS 11
1 AVS T T T
\ A 62
2 of @zy < = _
f2 = AXIS 2/
-1 1 | | .
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Concept: Uncorrelated data points
(expressed in w(a) space)
® Data
2 m Theoryl
r m Theory 2
O O o
O
1
0
0 S) 10 15
X
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Starting point: MCMC chains giving distributions for each
model at Stage 2.
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DETF Stage 3 photo [Opt]

- PNGB
© Exp.
+ lnv. Trac.

2 4 6 8
mode 1/c
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DETF Stage 3 photo [Opt]

- PNGB
© Exp.
+ lnv. Trac.

2 4 6 8
mode 1/c
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=» Distinct model locations

=>» Modes (and g;’s) reflect
specific expts.

=> mode amplitude/o; “physical”

RETEC+==a 3 photo [Opt]

PNGB

O

mode 2/

4 6 8
mode 1/c
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DETF Stage 3 photo [Opt]

- PNGB
© Exp.
+ lnv. Trac.

2 4 6 8
mode 1/c
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AW = ZCi 1?, DETF Stage 3 photo [Opt]

01k + PNGB
© Exp.
+ lnv. Trac.
- AS
L
I
C4 /64 % s,
E s: .
-0.3¢
-0.4+
-0.2 0 0.2 0.4

mode 3/c
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Eigenmodes:

z=4 z=2 z=1 z=0.5 z=0
; : J : : ; : --— Stage3
P ) - --Stagedg
8T — Stage4s
=

mode 2

mode 3
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Eigenmodes:

z=4 z=2 z=1 z=0.5 z=0
: : j : : : : --— Stage3

P - --Stagedg
8T — Stage4s
=
~ N.B. o,
o | change too
- 0
O
=

N L O U SRR RU PP RPN
b i
QD ;
< 0f
Q 5
E -1 | I I I I I I

n.e 0.3 n4 na 0.6 nr n.g 0.Aa 1
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c,/ o,

2/10/2016

mode 2/

DETF Stage 4 ground [Opt]

- PNGB

4 6 8 10 12
mode 1/c
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AW = ZCi f DETF Stage 4 ground [Opt]

- PNGB
0.4_ + Exp
+ lnv. Trac.
0.2 . AS
L 0
I
D
c,/o, T -0.2
&
-0.4
-0.6¢ o “:“«:.m
-0.8¢
0.5 1 1.5
mode 3/c
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—

DETF Stage 4 space [Opt]

>
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AW = ZCi f DETF Stage 4 space [Opt]

1_
+ PNGB
© Exp.
05 . )Iﬂr:; Trac.
S
E *
~I ol
C,loy 5
&
-0.5¢
-0.5 0 0.5 1 1.5 2

mode 3/c
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The different kinds of curves correspond to different
“trajectories” in mode space (similar to FT’s)

0.5
—PNGB
——EXP
-0.6} —IT
—AS
0.7} ]
©
=
0.8 .
-0.9} /\ -
5.2 0.4 0.6 0.8 1

a
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DETF Stage 4 ground

4r - PNGB
) - Exp.
2 *: * *++ :; * ;: o *: *:w mV TraC

PO, 25 oS ASe

=> Data that reveals a
universe with dark
energy given by “0 “

, will have finite minimum
-4 T “distances” ;(2 to other
quintessence models

mode 2/

5 4 s | = powerful
mode | discrimination is
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Consider discriminating power
of each experiment (=»look at
units on axes)
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DETF Stage 3 photo [Opt]

- PNGB
© Exp.
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AW = ZCi 1?, DETF Stage 3 photo [Opt]

01k + PNGB
© Exp.
+ lnv. Trac.
- AS
L
I
C4 /64 % s,
E s: .
-0.3¢
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mode 3/c

2/10/2016 PHY 262 Dar@é@'gA. Albrecht 248
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mode 2/

DETF Stage 4 ground [Opt]

- PNGB

4 6 8 10 12
mode 1/c
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AW = ZCi f DETF Stage 4 ground [Opt]

- PNGB
0.4_ + Exp
+ lnv. Trac.
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DETF Stage 4 space [Opt]
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AW = ZCi f DETF Stage 4 space [Opt]
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Quantify discriminating power:
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mode 2/

2/10/2016

[ A e - )

Stage 4 space Test Points

« PNGB
s EXp.
+ |nv. Trac.
. « AS
e ~ .. °
]
., ® o

Characterize each model distribution
by four “test points”

5 10 15 20
mode 1/c
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Stage 4 space Test Points

61 . PNGB
4t * EXxp.
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% ol ®e . ° o
= ®
-4+ ®
-6r Characterize each model distribution
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Stage 4 space Test Points

+« PNGB
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-0.5 0 0.5 1 1.5 2
mode 3/c

2/10/2016 PHY 262 Dark Energy; A. Albrecht 256



eMeasured the % from each one of the test points
(from the “test model”) to all other chain points (in the
“comparison model”).

*Only the first three modes were used in the
calculation.

eOrdered said x*‘s by value, which allows us to plot
them as a function of what fraction of the points have

a given value or lower.

eLooked for the smallest values for a given model to
model comparison.
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Model Separation in Mode Space

99% confidence at 11.36

Test point 1

271

AN

model within given X2 .
of test model’s test \ 0.2
point

Where the curve meets the

Fraction of compared \ . 7

axis, the compared model is
ruled out by that x? by an
observation of the test point.
This is the separation seen in
the mode plots.

211012016 PHY 262 Dark Energy; A. Albrecht

o o g0 40 30

Test point 4

258




Model Separation in Mode Space

99% confidence at 11.36

Where the curve meets the
axis, the compared model is
ruled out by that x? by an
observation of the test point.
This is the separation seen in
the mode plots.

211012016

X

0 g0 40 30

Test point 4
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Comments on model discrimination

*Principle component w(a) “modes” offer a space in which
straightforward tests of discriminating power can be made.

eThe DETF Stage 4 data is approaching the threshold of
resolving the structure that our scalar field models form in the
mode space.
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Comments on model discrimination

*Principle component w(a) “modes” offer a space in which
straightforward tests of discriminating power can be made.

eThe DETF Stage 4 data is approaching the threshold of
resolving the structure that our scalar field models form in the
mode space. "
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Comments on model discrimination

*Principle component w(a) “modes” offer a space in which
straightforward tests of discriminating power can be made.

eThe DETF Stage 4 data is approaching the threshold of
resolving the structure that our scalar field models form in the
mode space. e
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?

A:
« DETF Stage 3: Poor
« DETF Stage 4: Marginal... Excellent within reach
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE modele? o

- How is the DoE/ESA/N
these questions?

Jp looking at

Structure in mode

A: space
« DETF Stage 3: Pool
 DETF Stage 4: Mar e, ) reach
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DoE/ESA/NASA Science Working Group looking at
these questions?

A:
« DETF Stage 3: Poor
« DETF Stage 4: Marginal... Excellent within reach
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Followup questions:

— In what ways might the choice of DE parameters have skewed
the DETF results?

- What impact can these data sets have on specific DE models (vs
abstract parameters)?

- To what extent can these data sets deliver discriminating power
between specific DE models?

- How is the DOE/ESA/NASA Science Working Group looking at
these questions?
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DoE/ESA/NASA JDEM Science Working Group

=» Update agencies on figures of merit issues

=» formed Summer 08

=> finished ~now (moving on to SCG)

= Use w-eigenmodes to get more complete picture
=» also guantify deviations from Einstein gravity

=» For today. Something new we learned about
(normalizing) modes
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NB: in general the ﬁs form
a complete basis:

AW=>Ycf

The C are independently
measured qualities with
errors o.

2/10/2016

Define
ﬁD = ﬁ/\/Aa

which obey continuum
normalization'

IR A (k)aa=s,
then

AW=>Y"c”f°
where |

¢’ =c x+Aa
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m hy?

A: For lower modes, fD
has typical grid independent
“*height” O(1), so one can

more directly relate values
of o’ =0, xJAa  to one’s
thinking (priors) on Aw

Define
ﬁD = ﬁ/\/Aa

which obey continuum
normalization'

2.2 ( (k)Aa =g,

Aw=Scf = CiniD then

ZII Z AV—V:ZCiD]E;D
where |

¢’ =c x+Aa
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DETF Stage 4 OptAll f_ =1, Pr=0
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LI R OptAll f_ =1, Pr=0

Principle Axes (w(z))
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Upshot: More modes are interesting (“well measured” in a
grid invariant sense) than previously thought.
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An example of the power of the principle component
analysis:

Q: I've heard the claim that the DETF FoM is unfair to
BAO, because w0-wa does not describe the high-z
behavior to which BAO is particularly sensitive. Why
does this not show up in the 9D analysis?
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WL Stage 4 Opt
2 B I

Principle Axes

Characterizing 9D ellipses by principle axes and
corresponding errors
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BAO

Stage 4 Space BAO Opt; lin-a NGrid =9, Z ox

=4, Tag = 044301
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Stage 4 Space SN Opt; lin-a NGrid =9, Z ax

=4, Tag = 044301
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BAO
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Stage 4 Space SN Og

wO-wa analysis shows two
parameters measured on
average as well as 3.5 of these
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Detall: Model discriminating power
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DETF Stage 4 ground [Opt]
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Supernova Cosmology Project

Suzuki, et al., Ap.J. (2011)
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AW = ZCi f DETF Stage 4 ground [Opt]
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AW = ZCi f DETF Stage 4 ground [Opt]
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