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• Slides with a large blue box like this are outlines 
slides that still need to be updated (due to this 
slides set being combined from different talks)
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OUTLINE needs updating

• The Basics: Data, Directions and Issues

• Anthropics, Landscape & Critique

• Alternative Viewpoints

• Conclusions
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Positive acceleration requires 

• (unlike any known constituent of the 
Universe) or

• a non-zero cosmological constant  or

• an alteration to General Relativity.
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Two “familiar” ways to achieve 
acceleration:

1) Einstein’s cosmological constant 
and relatives

2) Whatever drove inflation: 
Dynamical, Scalar field?

( )1w = −
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• Today,

• Field models typically require a particle mass of 

Some general issues:
Numbers:

( )4120 4 310 10DE PM eVρ − −≈ ≈

31
010Qm eV H−≤ ≈ 2 2

Q P DEm M ρ≈from
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Some general issues

A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

Vacuum energy problem 

Λ

Λ = 
10120

Λ ≡ 0 
?

Vacuum Fluctuations
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Some general issues

A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

Vacuum energy problem (not resolved by scalar 
field models)

Λ

Λ = 
10120

Λ ≡ 0 
?

Vacuum Fluctuations
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OUTLINE

• The Basics: Data, Directions and Issues

• Anthropics, Landscape & Critique

• Alternative Viewpoints

• Conclusions
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Anthropics and the value of Λ 
Basic idea:
• When Λ or radiation dominates the universe structure (i.e. 

galaxies) cannot form 
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Anthropics and the value of Λ 
Basic idea:
• When Λ or radiation dominates the universe structure (i.e. 

galaxies) cannot form 
• Can we input that data that we have cosmic structure and 

predict the (very small) value of Λ? (Life?!)
• To do this one requires:

1) A theory with an ensemble of values of Λ
2) A way to quantify “having structure” sufficiently
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Basic idea:
• When Λ or radiation dominates the universe structure (i.e. 

galaxies) cannot form 
• Can we input that data that we have cosmic structure and 

predict the (very small) value of Λ? (Life?!)
• To do this one requires:

1) A theory with an ensemble of values of Λ
2) A way to quantify “having structure” sufficiently

• Weinberg used some simple choices for 1) and 2) and 
“predicted” a value of Λ in 1987 similar to the value discovered 
~10 years later. 

• Since then string theorists have argued that the string theory 
landscape delivers a suitable ensemble of Λ’s (Bousso & 
Polchinski) 
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Comment on how we use 
knowledge (“A” word!)

Total knowledge about 
the universe

Input Theory Output
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Input Theory Output

The best science will use up less 
here and produce more here
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Further comments on anthropics:

• Replace “life” with more humble “correlations” and one 
has a commonplace part of physics (non-controversial)
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Can get very different answers depending 
on how these ingredients are realized

Phillips & 
Albrecht 2011

• Use "entropy production weighting” (Causal Entropic 
Principle, Bousso et al)

• Include variability of world lines due to cosmic structure
• Two different behaviors for late time entropy production in 

halos

Un-normalized 
probability 
density 

( )log ρΛ
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Bounded alternatives to the landscape and eternality

• de Sitter equilibrium cosmology 

• Does holography imply non “self 
reproduction” ( no eternal inflation)?

• Causal patch cosmology

• Banks-Fischler Holographic cosmology
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2 1S A H − −∝ = = Λ

“De Sitter Space:  The ultimate equilibrium for the universe?

Horizon

8
3GH
GT H π ρΛ Λ= =
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Banks & Fischler & Dyson et al.

Implications of the de Sitter horizon

• Maximum entropy

• Gibbons-Hawking Temperature

• Only a finite volume ever observed

• If        is truly constant:  Cosmology as fluctuating   
Eqm.

• Maximum entropy                 finite Hilbert space of 
dimension 

1
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3
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Equilibrium Cosmology
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Rare 
Fluctuation
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Concept:

Realization:

“de Sitter Space”
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Rare 
Fluctuation
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Fluctuating from dSE to inflation:

• The process of an inflaton fluctuating from late time 
de Sittter to an inflating state is dominated by the 
“Guth-Farhi process”

• A “seed” is formed from the Gibbons-Hawking 
radiation that can then tunnel via the Guth-Farhi 
instanton. 

• Rate is well approximated by the rate of seed 
formation:

• Seed mass:

s s

GH

m m
T He e Λ

− −
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Small seed can produce an entire universe 
Evade “Boltzmann Brain” problem
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Dark Energy:
current theoretical issues and progress toward future 

experiments

A. Albrecht
UC Davis

PHY 262 
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Dark Energy 
(accelerating)

Dark Matter 
(Gravitating)

Ordinary Matter 
(observed in labs)

95% of the cosmic matter/energy is a mystery.  
It has never been observed even in our best 
laboratories
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American Association for the 
Advancement of Science
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American Association for the 
Advancement of Science

…at the moment, the nature of 
dark energy is arguably the 
murkiest question in physics--and 
the one that, when answered, 
may shed the most light. 2/10/2016
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“Right now, not only for 
cosmology but for 
elementary particle theory, 
this is the bone in our 
throat.”  - Steven Weinberg

“… Maybe the most 
fundamentally mysterious 
thing in basic science.”            
- Frank Wilczek

“… would be No. 1 
on my list of things 
to figure out.”          
- Edward Witten

“Basically, people 
don’t have a clue as 
to how to solve this 
problem.”  - Jeff 
Harvey

‘This is the biggest 
embarrassment in 
theoretical physics”   
- Michael Turner
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QUANTUM UNIVERSE
THE  REVOLUTION IN 21ST CE NTURY PARTICLE PHYSICS
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Questions that describe the current excitement 
and promise of particle physics.

2
HOW CAN WE SOLVE THE MYSTERY OF 
DARK ENERGY?

QUANTUM UNIVERSE
THE  REVOLUTION IN 21ST CE NTURY PARTICLE PHYSICS2/10/2016 PHY 262 Dark Energy; A. Albrecht 66
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“Most experts believe that nothing short of a revolution in our 
understanding of  fundamental physics will be required to 
achieve a full understanding of the cosmic acceleration.” 

Dark Energy Task Force (DETF) astro-ph/0609591
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“Of all the challenges in cosmology, the discovery of 
dark energy poses the greatest challenge for physics 
because there is no plausible or natural explanation…”

ESA Peacock report
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2008 US Particle 
Physics Project 
Prioritization 
Panel report

Dark Energy
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Dark Energy

2008 US Particle 
Physics Project 
Prioritization 
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Dark Energy

LSST
JDEM

2008 US Particle 
Physics Project 
Prioritization 
Panel report
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(EPP 2010)

BPAC

Q2C

ASPERA roadmap
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?
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Cosmic acceleration
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Cosmic acceleration
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Dark energy appears to be the dominant component of the physical 
Universe, yet there is no persuasive theoretical explanation. The 
acceleration of the Universe is, along with dark matter, the observed 
phenomenon which most directly demonstrates that our fundamental 
theories of particles and gravity are either incorrect or incomplete.  
Most experts believe that nothing short of a revolution in our 
understanding of fundamental physics* will be required to achieve a 
full understanding of the cosmic acceleration.  For these reasons, the 
nature of dark energy ranks among the very most compelling of all 
outstanding problems in physical science. These circumstances 
demand an ambitious observational program to determine the dark 
energy properties as well as possible.

From the Dark Energy Task Force report  (2006)
www.nsf.gov/mps/ast/detf.jsp, 
astro-ph/0690591

*My emphasis
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Universe, yet there is no persuasive theoretical explanation. The 
acceleration of the Universe is, along with dark matter, the observed 
phenomenon which most directly demonstrates that our fundamental 
theories of particles and gravity are either incorrect or incomplete.  
Most experts believe that nothing short of a revolution in our 
understanding of fundamental physics* will be required to achieve a 
full understanding of the cosmic acceleration.  For these reasons, the 
nature of dark energy ranks among the very most compelling of all 
outstanding problems in physical science. These circumstances 
demand an ambitious observational program to determine the dark 
energy properties as well as possible.

From the Dark Energy Task Force report  (2006)
www.nsf.gov/mps/ast/detf.jsp, 
astro-ph/0690591

*My emphasis

DETF = a HEPAP/AAAC 
subpanel to guide planning of 
future dark energy experiments

More info here2/10/2016 PHY 262 Dark Energy; A. Albrecht 80
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This talk
Part 1:

A few attempts to explain dark energy 

 Motivations, problems and other comments

 Theme: We may not know where this revolution is 
taking us, but it is already underway:

Part 2

Planning new experiments

- DETF

- Next questions
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Some general issues:
Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

Positive acceleration clearly requires 

• (unlike any known constituent of the 
Universe) or

• a non-zero cosmological constant  or

• an alteration to General Relativity.

/ 1/ 3w p ρ≡ < −

( )4 3
3 3

a G p
a

π ρ Λ
= − + +



2/10/2016 PHY 262 Dark Energy; A. Albrecht 82



• Today,

• Many field models require a particle mass of 

Some general issues:
Numbers:

( )4120 4 310 10DE PM eVρ − −≈ ≈

31
010Qm eV H−≤ ≈ 2 2

Q P DEm M ρ≈from
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• Today,

• Many field models require a particle mass of 

Some general issues:
Numbers:

( )4120 4 310 10DE PM eVρ − −≈ ≈

31
010Qm eV H−≤ ≈ 2 2

Q P DEm M ρ≈from

Where do these come from and how are they 
protected from quantum corrections?
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Some general issues:
Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

Positive acceleration clearly requires 

• (unlike any known constituent of the 
Universe) or

• a non-zero cosmological constant  or

• an alteration to General Relativity.

/ 1/ 3w p ρ≡ < −

( )4 3
3 3

a G p
a

π ρ Λ
= − + +



/ 1/ 3w p ρ≡ < −

Two “familiar” ways to achieve 
acceleration:

1) Einstein’s cosmological constant 
and relatives

2) Whatever drove inflation: 
Dynamical, Scalar field?

( )1w = −
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Some general issues:
Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

Positive acceleration clearly requires 

• (unlike any known constituent of the 
Universe) or

• a non-zero cosmological constant  or

• an alteration to General Relativity.

/ 1/ 3w p ρ≡ < −

( )4 3
3 3

a G p
a

π ρ Λ
= − + +



/ 1/ 3w p ρ≡ < −
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

Vacuum energy problem (we’ve gotten 
“nowhere” with this)

Λ

Λ = 
10120

Λ ≡ 0 
?

Vacuum Fluctuations
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 The string theory landscape (a radically 
different idea of what we mean by a fundamental 
theory)

Λ
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 The string theory landscape (a radically 
different idea of what we mean by a fundamental 
theory)

Λ

“Theory of Everything”

“Theory of Anything”

?
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 The string theory landscape (a radically 
different idea of what we mean by a fundamental 
theory)

Λ

Not exactly 
a cosmological 

constant
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy

Λ

Banks, Fischler, Susskind, AA & Sorbo etc2/10/2016 PHY 262 Dark Energy; A. Albrecht 91



2 1S A H − −∝ = = Λ

“De Sitter Space:  The ultimate equilibrium for the 
universe?

Horizon

Quantum effects: Hawking Temperature

8
3 DE
GT H π ρ= =
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2 1S A H − −∝ = = Λ

“De Sitter Space:  The ultimate equilibrium for the 
universe?

Horizon

Quantum effects: Hawking Temperature

8
3 DE
GT H π ε= =Does this imply (via    “               “)

a finite Hilbert space for physics?
lnS N=

Banks, Fischler2/10/2016 PHY 262 Dark Energy; A. Albrecht 93



Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy 
Equilibrium Cosmology 

Λ

Rare 
Fluctuation

Dyson, Kleban & Susskind;  AA & Sorbo etc2/10/2016 PHY 262 Dark Energy; A. Albrecht 94



Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy 
Equilibrium Cosmology 

Λ

Rare 
Fluctuation

“Boltzmann’s Brain”  ?
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy 
Equilibrium Cosmology 

Λ

Rare 
Fluctuation

Dyson, Kleban & Susskind;  AA & Sorbo etcThis picture is in deep conflict with 
observation
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy 
Equilibrium Cosmology 

Λ

Rare 
Fluctuation

Dyson, Kleban & Susskind;  AA & Sorbo etcThis picture is in deep conflict with 
observation (resolved by landscape?)
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Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy 
Equilibrium Cosmology 

Λ

Rare 
Fluctuation

Dyson, Kleban & Susskind;  AA & Sorbo etc

This picture forms a nice 
foundation for inflationary 
cosmology2/10/2016 PHY 262 Dark Energy; A. Albrecht 98



Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

 De Sitter limit: Horizon  Finite Entropy 
Equilibrium Cosmology 

Λ

Rare 
Fluctuation

Dyson, Kleban & Susskind;  AA & Sorbo etc

Perhaps saved from this 
discussion by instability of 
De Sitter space (Woodard et 
al)2/10/2016 PHY 262 Dark Energy; A. Albrecht 99



Specific ideas:  i) A cosmological constant

• Nice “textbook”  solutions BUT

• Deep problems/impacts re fundamental physics

Λ

is not the “simple option”Λ
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Some general issues:
Alternative Explanations?:

Is there a less dramatic explanation of the data?
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Some general issues:
Alternative Explanations?:

Is there a less dramatic explanation of the data?

For example is supernova dimming due to 

• dust? (Aguirre) 

• γ-axion interactions? (Csaki et al)

• Evolution of SN properties? (Drell et al)

Many of these are under increasing pressure from data, but 
such skepticism is critically important.2/10/2016 PHY 262 Dark Energy; A. Albrecht 102



Some general issues:
Alternative Explanations?:

Is there a less dramatic explanation of the data?

Or perhaps 

• Nonlocal gravity from loop corrections (Woodard & Deser)

• Misinterpretation of a genuinely inhomogeneous universe
(ie. Kolb and collaborators)
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• Recycle inflation ideas (resurrect            dream?)

• Serious unresolved problems

 Explaining/ protecting 

 5th force problem

 Vacuum energy problem

What is the Q field? (inherited from inflation)

Why now? (Often not a separate problem)

Specific ideas:  ii) A scalar field (“Quintessence”)

31
010Qm eV H−≤ ≈

0Λ =
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• Recycle inflation ideas (resurrect            dream?)

• Serious unresolved problems

 Explaining/ protecting 

 5th force problem

 Vacuum energy problem

What is the Q field? (inherited from inflation)

Why now? (Often not a separate problem)

Specific ideas:  ii) A scalar field (“Quintessence”)

31
010Qm eV H−≤ ≈

0Λ =Inspired by
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• Recycle inflation ideas (resurrect            dream?)

• Serious unresolved problems

 Explaining/ protecting 

 5th force problem

 Vacuum energy problem

What is the Q field? (inherited from inflation)

Why now? (Often not a separate problem)

Specific ideas:  ii) A scalar field (“Quintessence”)

31
010Qm eV H−≤ ≈

0Λ = Result?
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V

ϕ

Learned from inflation: A slowly rolling (nearly) 
homogeneous scalar field can accelerate the universe

3H Vφ φ ′+ = − 

2

1pw
V
φ

ρ
≡ ≈ − +
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V

ϕ

Learned from inflation: A slowly rolling (nearly) 
homogeneous scalar field can accelerate the universe

3H Vφ φ ′+ = − 

2

1pw
V
φ

ρ
≡ ≈ − +



Dynamical

0≠
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V

ϕ

Learned from inflation: A slowly rolling (nearly) 
homogeneous scalar field can accelerate the universe

3H Vφ φ ′+ = − 

2

1pw
V
φ

ρ
≡ = − +



Dynamical

0≠

Rolling scalar field dark energy is called “quintessence”
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Some quintessence potentials

Exponential (Wetterich, Peebles & Ratra)

PNGB aka Axion (Frieman et al) 

Exponential with prefactor (AA & Skordis)

Inverse Power Law (Ratra & Peebles, Steinhardt et al)
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Some quintessence potentials

Exponential (Wetterich, Peebles & Ratra)

PNGB aka Axion (Frieman et al) 

Exponential with prefactor (AA & Skordis)

0( )V V e λϕϕ −=

0( ) (cos( / ) 1)V Vϕ ϕ λ= +

( )( )2
0( )V V e λϕϕ χ ϕ β δ −= − +

0( ) mV V
α

ϕ
ϕ

 
=  

 

Inverse Power Law (Ratra & Peebles, Steinhardt et al)
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The potentials

Exponential (Wetterich, Peebles & Ratra)

PNGB aka Axion (Frieman et al) 

Exponential with prefactor (AA & Skordis)

0( )V V e λϕϕ −=

0( ) (cos( / ) 1)V Vϕ ϕ λ= +

( )( )2
0( )V V e λϕϕ χ ϕ β δ −= − +

0( ) mV V
α

ϕ
ϕ

 
=  

 

Inverse Power Law (Ratra & Peebles, Steinhardt et al)

Stronger than 
average 

motivations & 
interest 
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PNGB
EXP
IT
AS

…they cover a 
variety of behavior.

a = “cosmic scale factor” ≈ time2/10/2016 PHY 262 Dark Energy; A. Albrecht 113



Dark energy and the ego test
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Specific ideas:  ii) A scalar field (“Quintessence”)
• Illustration: Exponential with prefactor (EwP) 
models:

All parameters O(1) in Planck units,

 motivations/protections from extra dimensions & 
quantum gravity

( )( ) ( )2
0( ) expV V B Aϕ ϕ ϕλ= − + −

AA & Skordis 1999 
http://arxiv.org/abs/astr
o-ph/9908085

Burgess & 
collaborators

(e.g.                                                          ) 34B = .005A = 8λ = 0 1V =
2/10/2016 PHY 262 Dark Energy; A. Albrecht 115
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Specific ideas:  ii) A scalar field (“Quintessence”)
• Illustration: Exponential with prefactor (EwP) 
models:

All parameters O(1) in Planck units,

 motivations/protections from extra dimensions & 
quantum gravity

( )( ) ( )2
0( ) exp /V V B Aϕ ϕ ϕ λ= − + −

AA & Skordis 1999

Burgess & 
collaborators

(e.g.                                                          ) 34B = .005A = 8λ = 0 1V =

ϕ

( )V ϕ

ϕ β=
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Specific ideas:  ii) A scalar field (“Quintessence”)
• Illustration: Exponential with prefactor (EwP) 
models:

All parameters O(1) in Planck units,

 motivations/protections from extra dimensions & 
quantum gravity

( )( ) ( )2
0( ) exp /V V B Aϕ ϕ ϕ λ= − + −

AA & Skordis 1999

Burgess & 
collaborators

(e.g.                                                          ) 34B = .005A = 8λ = 0 1V =

ϕ
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Specific ideas:  ii) A scalar field (“Quintessence”)
• Illustration: Exponential with prefactor (EwP) 
models:

AA & Skordis 1999
10-20 100-1.5

-1

-0.5

0

0.5

1

a

Ω
,   

w

 

 

Ωr
Ωm
ΩD
w
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Specific ideas:  iii) A mass varying neutrinos 
(“MaVaNs”)

• Exploit

• Issues
 Origin of “acceleron” (varies neutrino 
mass, accelerates the universe)

 gravitational collapse 

1/ 4 310DEm eVν ρ −∆ ≈ ≈

Faradon, Nelson & Weiner

Afshordi et al 2005

Spitzer 2006
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Specific ideas:  iii) A mass varying neutrinos 
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Specific ideas:  iii) A mass varying neutrinos 
(“MaVaNs”)

• Exploit

• Issues
 Origin of “acceleron” (varies neutrino 
mass, accelerates the universe)

 gravitational collapse 

1/ 4 310DEm eVν ρ −∆ ≈ ≈

Faradon, Nelson & Weiner

Afshordi et al 2005

Spitzer 2006

“ ”
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Specific ideas:  iv) Modify Gravity
• Not something to be done lightly, but given our confusion 
about cosmic acceleration, well worth considering.

• Many deep technical issues

e.g. DGP (Dvali, Gabadadze and Porrati)

Charmousis et alGhosts
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Specific ideas:  iv) Modify Gravity
• Not something to be done lightly, but given our confusion 
about cosmic acceleration, well worth considering.

• Many deep technical issues

e.g. DGP (Dvali, Gabadadze and Porrati)

Charmousis et alGhosts

See “Origins of Dark Energy” meeting 
May 07 for numerous talks
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This talk
Part 1:

A few attempts to explain dark energy 

- Motivations, Problems and other comments

 Theme: We may not know where this revolution is 
taking us, but it is already underway:

Part 2

Planning new experiments

- DETF

- Next questions
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This talk
Part 1:

A few attempts to explain dark energy 

- Motivations, Problems and other comments

 Theme: We may not know where this revolution is 
taking us, but it is already underway:

Part 2

Planning new experiments

- DETF

- Next questions
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Astronomy Primer for Dark Energy
Solve GR for the scale factor a of the Universe (a=1 today):

Positive acceleration clearly requires              unlike any known
constituent of the Universe, or a non-zero cosmological constant -
or an alteration to General Relativity.

2

2

8
3 3

NGa k
a a

π ρ Λ  = + − 
 



The second basic equation is

Today we have
2

2 0
0

8
3 3

NGaH k
a

π ρ Λ = = + − 
 



/ 1/ 3w p ρ≡ < −

From 
DETF
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Hubble Parameter

 

1 =
8πGN ρ0

3H0
2 +

Λ
3H0

2 −
k

H0
2 ≡ Ωρ + ΩΛ + Ωk

We can rewrite this as

To get the generalization that applies not just now (a=1), we need
to distinguish between non-relativistic matter and relativistic matter.
We also generalize Λ to dark energy with a constant w, 
not necessarily equal to -1:

Dark Energy

curvature

rel. matter

non-rel. matter
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What are the observable quantities?
Expansion factor a is directly observed by redshifting of emitted 
photons: a=1/(1+z), z is “redshift.”

Time is not a direct observable (for present discussion).  A measure 
of elapsed time is the distance traversed by an emitted photon:

This distance-redshift relation is one of the diagnostics of dark energy.  
Given a value for curvature, there is 1-1 map between D(z) and w(a).

Distance is manifested by changes in flux, subtended angle, and sky 
densities of objects at fixed luminosity, proper size, and space density.  

These are one class of observable quantities for dark-energy study.
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Another observable quantity:
The progress of gravitational collapse is damped by expansion of the 
Universe.  Density fluctuations arising from inflation-era quantum 
fluctuations increase their amplitude with time.  Quantify this by the 
growth factor g of density fluctuations in linear perturbation theory.  
GR gives:

This growth-redshift relation is the second diagnostic of dark energy.  
If GR is correct, there is 1-1 map between D(z) and g(z).

If GR is incorrect, observed quantities may fail to obey this relation.

Growth factor is determined by measuring the density fluctuations in 
nearby dark matter (!), comparing to those seen at z=1088 by WMAP.
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What are the observable quantities?

Future dark-energy experiments will require percent-level precision on
the primary observables D(z) and g(z).
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Dark Energy with Type Ia Supernovae

• Exploding white dwarf 
stars: mass exceeds 
Chandrasekhar limit.  

• If luminosity is fixed, 
received flux gives 
relative distance via 
Qf=L/4πD2.

• SNIa are not
homogeneous events.  
Are all luminosity-
affecting variables 
manifested in observed 
properties of the 
explosion (light curves, 
spectra)? Supernovae Detected in HST

GOODS Survey (Riess et al)2/10/2016 PHY 262 Dark Energy; A. Albrecht 132



Dark Energy with Type Ia Supernovae

Example of SN data:
HST GOODS Survey (Riess et al)

Clear evidence of acceleration!
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Riess et al astro-ph/0611572
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Dark Energy with Baryon Acoustic Oscillations

•Acoustic waves propagate in the baryon-
photon plasma starting at end of inflation. 

•When plasma combines to neutral 
hydrogen, sound propagation ends.

•Cosmic expansion sets up a predictable 
standing wave pattern on scales of the 
Hubble length. The Hubble length 
(~sound horizon rs) ~140 Mpc is imprinted 
on the matter density pattern.

•Identify the angular scale subtending rs
then use θs=rs/D(z)

•WMAP/Planck determine rs and the 
distance to z=1088.

•Survey of galaxies (as signposts for dark 
matter) recover D(z), H(z) at 0<z<5.

•Galaxy survey can be visible/NIR or 21-
cm emission

BAO seen in CMB
(WMAP)

BAO seen in SDSS
Galaxy correlations

(Eisenstein et al)
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Dark Energy with Galaxy Clusters
•Galaxy clusters are the largest 
structures in Universe to undergo 
gravitational collapse.

•Markers for locations with 
density contrast above a critical 
value.

•Theory predicts the mass 
function dN/dMdV. We observe 
dN/dzdΩ.

•Dark energy sensitivity: 

•Mass function is very sensitive 
to M; very sensitive to g(z).

•Also very sensitive to mis-
estimation of mass, which is not 
directly observed.

Optical View
(Lupton/SDSS)

Cluster method probes both D(z) and g(z)
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Dark Energy with Galaxy Clusters

30 GHz View
(Carlstrom et al)

Sunyaev-Zeldovich effect

X-ray View
(Chandra)

Optical View
(Lupton/SDSS)
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Galaxy Clusters from ROSAT X-ray surveys

ROSAT cluster surveys yielded ~few 
100 clusters in controlled samples.

Future X-ray, SZ, lensing surveys 
project few x 10,000 detections.

From Rosati et al, 1999:
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Dark Energy with Weak Gravitational Lensing

•Mass concentrations in the 
Universe deflect photons from 
distant sources.

•Displacement of background 
images is unobservable, but their 
distortion (shear) is measurable.

•Extent of distortion depends 
upon size of mass concentrations 
and relative distances.

•Depth information from redshifts.  
Obtaining 108 redshifts from 
optical spectroscopy is infeasible.  
“photometric” redshifts instead.

Lensing method probes both D(z) and g(z)
2/10/2016 PHY 262 Dark Energy; A. Albrecht 139



Dark Energy with Weak Gravitational Lensing

In weak lensing, shapes 
of galaxies are measured.  
Dominant noise source is 
the (random) intrinsic 
shape of galaxies.  Large-
N statistics extract lensing 
influence from intrinsic 
noise.2/10/2016 PHY 262 Dark Energy; A. Albrecht 140
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Choose your background photon source:

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Faint background galaxies:

Use visible/NIR imaging to 
determine shapes.

Photometric redshifts.

Photons from the CMB:

Use mm-wave high-
resolution imaging of CMB.

All sources at z=1088.

21-cm photons:

Use the proposed Square 
Kilometer Array (SKA).

Sources are neutral H in 
regular galaxies at z<2, or 
the neutral Universe at z>6.

(lensing not yet detected)

(lensing not yet detected)

Hoekstra et al 2006:
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Q: Given that we know so little about the cosmic 
acceleration, how do we represent source of this 
acceleration when we forecast the impact of future 
experiments?

Consensus Answer: (DETF, Joint Dark Energy Mission 
Science Definition Team JDEM STD) 

• Model dark energy as homogeneous fluid  all 
information contained in 

• Model possible breakdown of GR by inconsistent 
determination of w(a) by different methods. 

( ) ( ) ( )/w a p a aρ≡
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Q: Given that we know so little about the cosmic 
acceleration, how do we represent source of this 
acceleration when we forecast the impact of future 
experiments?

Consensus Answer: (DETF, Joint Dark Energy Mission 
Science Definition Team JDEM STD) 

• Model dark energy as homogeneous fluid  all 
information contained in 

• Model possible breakdown of GR by inconsistent 
determination of w(a) by different methods. 

( ) ( ) ( )/w a p a aρ≡

Also: Std cosmological parameters including 
curvature We know very little now2/10/2016 PHY 262 Dark Energy; A. Albrecht 145



Some general issues:
Properties:

Solve GR for the scale factor a of the Universe (a=1 today):

Positive acceleration clearly requires 

• (unlike any known constituent of the 
Universe) or

• a non-zero cosmological constant  or

• an alteration to General Relativity.

/ 1/ 3w p ρ≡ < −

( )4 3
3 3

a G p
a

π ρ Λ
= − + +



Two “familiar” ways to achieve 
acceleration:

1) Einstein’s cosmological constant 
and relatives

2) Whatever drove inflation: 
Dynamical, Scalar field?

/ 1/ 3w p ρ≡ < −

( )1w = −

Recall:
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w0

wa

−1

0

DETF figure of merit:
= 1 / Area

95% CL contour

(DETF parameterization… Linder)

( )0( ) 1aw a w w a= + −
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The DETF stages (data models constructed for each 
one)

Stage 2: Underway

Stage 3: Medium size/term projects 

Stage 4: Large longer term projects (ie JDEM, LST)

DETF modeled

• SN

•Weak Lensing

•Baryon Oscillation 

•Cluster data
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DETF Projections
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DETF Projections
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Combination

Technique #2

Technique #1

A technical point: The role of correlations
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From the DETF Executive Summary

One of our main findings is that no single technique can 
answer the outstanding questions about dark energy: 
combinations of at least two of these techniques must be 
used to fully realize the promise of future observations. 

Already there are proposals for major, long-term (Stage IV) 
projects incorporating these techniques that have the 
promise of increasing our figure of merit by a factor of ten 
beyond the level it will reach with the conclusion of current 
experiments.  What is urgently needed is a commitment to 
fund a program comprised of a selection of these projects.  
The selection should be made on the basis of critical 
evaluations of their costs, benefits, and risks.  
2/10/2016 PHY 262 Dark Energy; A. Albrecht 154



The Dark Energy Task Force (DETF)
 Created specific simulated data sets (Stage 2, Stage 3, Stage 
4)

 Assessed their impact on our knowledge of dark energy as 
modeled with the w0-wa parameters

( ) ( )0 1aw a w w a= + −
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Followup questions:

 In what ways might the choice of DE parameters biased the 
DETF results?

What impact can these data sets have on specific DE models (vs 
abstract parameters)? 

 To what extent can these data sets deliver discriminating power 
between specific DE models?

 How is the DoE/ESA/NASA Science Working Group looking at 
these questions?

The Dark Energy Task Force (DETF)
 Created specific simulated data sets (Stage 2, Stage 3, Stage 
4)

 Assessed their impact on our knowledge of dark energy as 
modeled with the w0-wa parameters
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The Dark Energy Task Force (DETF)
 Created specific simulated data sets (Stage 2, Stage 3, Stage 
4)

 Assessed their impact on our knowledge of dark energy as 
modeled with the w0-wa parameters

Followup questions:

 In what ways might the choice of DE parameters biased the 
DETF results?

What impact can these data sets have on specific DE models (vs 
abstract parameters)? 

 To what extent can these data sets deliver discriminating power 
between specific DE models?

 How is the DoE/ESA/NASA Science Working Group looking at 
these questions?

NB: To make concrete
comparisons this work ignores

various possible improvements to the 
DETF data models.

(see for example J Newman, H Zhan et al 
& Schneider et al)

ALSO
Ground/Space synergies

DETF
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A: 

• DETF Stage 3: Poor

• DETF Stage 4:  Marginal… Excellent within reach (AA)

 In what ways might the choice of DE parameters have skewed 
the DETF results?

A: Only by an overall (possibly important) rescaling

What impact can these data sets have on specific DE models (vs 
abstract parameters)?

A: Very similar to DETF results in w0-wa space

Summary

To what extent can these data sets deliver discriminating power 
between specific DE models?
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10-2 10-1 100 101-1

0

1

z

Try N-D stepwise constant w(a)

( )w a∆

AA & G Bernstein 2006 (astro-ph/0608269 ).  More detailed info can be 
found at  http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/

N parameters are coefficients of the “top 
hat functions” 

( ) ( )1
1

( ) 1 1 ,
N

i i i
i

w a w a wT a a +
=

= − + ∆ = − + ∆∑

( )1,i iT a a +

2/10/2016 PHY 262 Dark Energy; A. Albrecht 163

http://arxiv.org/abs/astro-ph/0608269
http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/


10-2 10-1 100 101-1

0

1

z

Try N-D stepwise constant w(a)

( )w a∆

AA & G Bernstein 2006 (astro-ph/0608269 ).  More detailed info can be 
found at  http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/

N parameters are coefficients of the “top 
hat functions” 

( ) ( )1
1

( ) 1 1 ,
N

i i i
i

w a w a wT a a +
=

= − + ∆ = − + ∆∑

( )1,i iT a a +

Used by 

Huterer & Turner; 
Huterer & Starkman; 
Knox et al;    
Crittenden & Pogosian 
Linder;  Reiss et al; 
Krauss et al              
de Putter & Linder;  
Sullivan et al
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Try N-D stepwise constant w(a)

( )w a∆

AA & G Bernstein 2006

N parameters are coefficients of the “top 
hat functions” 

( ) ( )1
1

( ) 1 1 ,
N

i i i
i

w a w a wT a a +
=

= − + ∆ = − + ∆∑

( )1,i iT a a +

 Allows greater 
variety of w(a) 
behavior 

 Allows each 
experiment to 
“put its best foot 
forward”

 Any signal 
rejects Λ
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 Allows greater 
variety of w(a) 
behavior 

 Allows each 
experiment to 
“put its best foot 
forward”

 Any signal 
rejects Λ“Convergence”

2/10/2016 PHY 262 Dark Energy; A. Albrecht 166



2D illustration:

1σ

2σ

Axis 1

Axis 2

1f =


2f =


Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes      and 
corresponding N errors    :

if


iσ
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Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes      and 
corresponding N errors    :

2D illustration:
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Principle component 
analysis
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Upshot of N-D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4 
vs Stage 3

3) The above can be understood approximately in 
terms of a simple rescaling (related to higher 
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking, 
value of combinations etc). 

Inverts 
cost/FoM
Estimates
S3 vs S4
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A: 

• DETF Stage 3: Poor

• DETF Stage 4:  Marginal… Excellent within reach (AA)

 In what ways might the choice of DE parameters have skewed 
the DETF results?

A: Only by an overall (possibly important) rescaling

What impact can these data sets have on specific DE models (vs 
abstract parameters)?

A: Very similar to DETF results in w0-wa space

Summary

To what extent can these data sets deliver discriminating power 
between specific DE models?
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DETF stage 2

DETF stage 3

DETF stage 4

[ Abrahamse, AA, Barnard, 
Bozek & Yashar PRD 2008]
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DETF Stage 4 ground [Opt] 
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The different kinds of curves correspond to different 
“trajectories” in mode space (similar to FT’s)
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DETF Stage 4 ground

 Data that reveals a 
universe with dark 
energy given by “     “       
will have finite minimum          
“distances”      to other 
quintessence models

 powerful 
discrimination is 
possible. 

2χ
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A: 

• DETF Stage 3: Poor

• DETF Stage 4:  Marginal… Excellent within reach (AA)

 In what ways might the choice of DE parameters have skewed 
the DETF results?

A: Only by an overall (possibly important) rescaling

What impact can these data sets have on specific DE models (vs 
abstract parameters)?

A: Very similar to DETF results in w0-wa space

Summary

To what extent can these data sets deliver discriminating power 
between specific DE models?
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A: 

• DETF Stage 3: Poor

• DETF Stage 4:  Marginal… Excellent within reach (AA)

 In what ways might the choice of DE parameters have skewed 
the DETF results?

A: Only by an overall (possibly important) rescaling

What impact can these data sets have on specific DE models (vs 
abstract parameters)?

A: Very similar to DETF results in w0-wa space

Summary

To what extent can these data sets deliver discriminating power 
between specific DE models?

Interesting contribution
to discussion of Stage 4

(if you believe scalar 
field modes)
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 How is the DoE/ESA/NASA Science Working Group looking at these 
questions?

i) Using w(a) eigenmodes

ii) Revealing value of higher modes
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DoE/ESA/NASA JDEM Science Working Group 

 Update agencies on figures of merit issues

 formed Summer 08

 finished Dec 08 (report on arxiv Jan 09, moved on to 
SCG)

 Use w-eigenmodes to get more complete picture

 also quantify deviations from Einstein gravity

 For tomorrow:  Something new we learned about 
(normalizing) modes
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This talk
Part 1:

A few attempts to explain dark energy 

- Motivations, problems and other comments

 Theme: We may not know where this revolution is 
taking us, but it is already underway:

Part 2

Planning new experiments

- DETF

- Next questions
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END
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Additional Slides
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N parameters are coefficients of the “top 
hat functions” 
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w a w a wT a a +
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= − + ∆ = − + ∆∑

( )1,i iT a a +

Used by 

Huterer & Turner; 
Huterer & Starkman; 
Knox et al;    
Crittenden & Pogosian 
Linder;  Reiss et al; 
Krauss et al              
de Putter & Linder;  
Sullivan et al
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 Allows greater 
variety of w(a) 
behavior 

 Allows each 
experiment to 
“put its best foot 
forward”

 Any signal 
rejects Λ
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 Allows greater 
variety of w(a) 
behavior 

 Allows each 
experiment to 
“put its best foot 
forward”

 Any signal 
rejects Λ“Convergence”
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2D illustration:

1σ

2σ

Axis 1

Axis 2

1f =


2f =


Q: How do you describe error ellipsis in ND space?

A: In terms of N principle axes      and 
corresponding N errors    :

if


iσ
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Principle component 
analysis
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NB: in general the    s form 
a complete basis:
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if


The     are independently 
measured qualities with 
errors 
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Stage 2  Stage 4 = 3 orders of magnitude (vs 1 for DETF)

Stage 2  Stage 3 = 1 order of magnitude (vs 0.5 for DETF)
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Upshot of N-D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4 
vs Stage 3

3) The above can be understood approximately in 
terms of a simple rescaling (related to higher 
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking, 
value of combinations etc). 
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Upshot of N-D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4 
vs Stage 3

3) The above can be understood approximately in 
terms of a simple rescaling (related to higher 
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking, 
value of combinations etc). 

Inverts 
cost/FoM
Estimates
S3 vs S4
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Upshot of N-D FoM:

1) DETF underestimates impact of expts

2) DETF underestimates relative value of Stage 4 
vs Stage 3

3) The above can be understood approximately in 
terms of a simple rescaling (related to higher 
dimensional parameter space).

4) DETF FoM is fine for most purposes (ranking, 
value of combinations etc). 

 A nice way to gain insights into data (real or 
imagined)
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Followup questions:

 In what ways might the choice of DE parameters have skewed 
the DETF results?

What impact can these data sets have on specific DE models (vs 
abstract parameters)? 

 To what extent can these data sets deliver discriminating power 
between specific DE models?

 How is the DoE/ESA/NASA Science Working Group looking at 
these questions?
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DETF stage 2

DETF stage 3

DETF stage 4

[ Abrahamse, AA, Barnard, 
Bozek & Yashar PRD 2008]
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DETF stage 2

DETF stage 3

DETF stage 4

(S2/3)

(S2/10)

Upshot:

Story in scalar field parameter 
space very similar to DETF story 
in w0-wa space. 

[ Abrahamse, AA, Barnard, 
Bozek & Yashar 2008]
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A: Very similar to DETF results in w0-wa space
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Michael Barnard et al  arXiv:0804.0413

Followup questions:

 In what ways might the choice of DE parameters have skewed 
the DETF results?

What impact can these data sets have on specific DE models (vs 
abstract parameters)? 

 To what extent can these data sets deliver discriminating power 
between specific DE models?

 How is the DoE/ESA/NASA Science Working Group looking at 
these questions?
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Problem:

Each scalar field model is defined in its own parameter 
space.  How should one quantify discriminating power 
among models?

Our answer:  

Form each set of scalar field model parameter values, 
map the solution into w(a) eigenmode space, the space 
of uncorrelated observables.  

 Make the comparison in the space of uncorrelated 
observables.
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Concept: Uncorrelated data points 
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Starting point:  MCMC chains giving distributions for each 
model at Stage 2.
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DETF Stage 3 photo [Opt]
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DETF Stage 3 photo [Opt]
 Distinct model locations

 mode amplitude/σi “physical”

 Modes (and σi’s) reflect 
specific expts.

1 1/c σ

2 2/c σ
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DETF Stage 3 photo [Opt]
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Eigenmodes:

Stage 3            
Stage 4 g
Stage 4 s

z=4 z=2 z=1 z=0.5 z=0
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Eigenmodes:

Stage 3            
Stage 4 g
Stage 4 s

z=4 z=2 z=1 z=0.5 z=0

N.B. σi
change too

2/10/2016 PHY 262 Dark Energy; A. Albrecht 239



DETF Stage 4 ground [Opt] 
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DETF Stage 4 space [Opt] 
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DETF Stage 4 space [Opt] 

3 3/c σ

4 4/c σ

i i
i

w c f∆ = ∑




2/10/2016 PHY 262 Dark Energy; A. Albrecht 243



0.2 0.4 0.6 0.8 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

a

w
(a

)

 

 

PNGB
EXP
IT
AS

The different kinds of curves correspond to different 
“trajectories” in mode space (similar to FT’s)
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DETF Stage 4 ground

 Data that reveals a 
universe with dark 
energy given by “     “       
will have finite minimum          
“distances”      to other 
quintessence models

 powerful 
discrimination is 
possible. 

2χ
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Consider discriminating power 
of each experiment (look at 
units on axes)
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Quantify discriminating power:
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Stage 4 space Test Points

Characterize each model distribution 
by four “test points”
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Stage 4 space Test Points

Characterize each model distribution 
by four “test points”

(Priors: Type 1 optimized for conservative results re discriminating power.)2/10/2016 PHY 262 Dark Energy; A. Albrecht 255



Stage 4 space Test Points
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•Measured the χ2 from each one of the test points 
(from the “test model”) to all other chain points (in the 
“comparison model”).

•Only the first three modes were used in the 
calculation.

•Ordered said χ2‘s by value, which allows us to plot 
them as a function of what fraction of the points have 
a given value or lower.

•Looked for the smallest values for a given model to 
model comparison.
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Model Separation in Mode Space

Fraction of compared 
model within given χ2

of test model’s test 
point

Test point 4

Test point 1

Where the curve meets the 
axis, the compared model is 
ruled out by that χ2 by an 
observation of the test point.
This is the separation seen in 
the mode plots.

99% confidence at 11.36

2χ

2χ
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Model Separation in Mode Space

Fraction of compared 
model within given χ2

of test model’s test 
point

Test point 4

Test point 1

Where the curve meets the 
axis, the compared model is 
ruled out by that χ2 by an 
observation of the test point.
This is the separation seen in 
the mode plots.

99% confidence at 11.36

…is this gap

This gap…

2χ
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Comments on model discrimination

•Principle component w(a) “modes” offer a space in which 
straightforward tests of discriminating power can be made. 

•The DETF Stage 4 data is approaching the threshold of 
resolving the structure that our scalar field models form in the 
mode space.
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Followup questions:

 In what ways might the choice of DE parameters have skewed 
the DETF results?

What impact can these data sets have on specific DE models (vs 
abstract parameters)? 

 To what extent can these data sets deliver discriminating power 
between specific DE models?

 How is the DoE/ESA/NASA Science Working Group looking at 
these questions?

A: 

• DETF Stage 3: Poor

• DETF Stage 4:  Marginal… Excellent within reach
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Followup questions:

 In what ways might the choice of DE parameters have skewed 
the DETF results?

What impact can these data sets have on specific DE models (vs 
abstract parameters)? 

 To what extent can these data sets deliver discriminating power 
between specific DE models?

 How is the DoE/ESA/NASA Science Working Group looking at 
these questions?

A: 

• DETF Stage 3: Poor

• DETF Stage 4:  Marginal… Excellent within reach

Structure in mode 
space
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DoE/ESA/NASA JDEM Science Working Group 

 Update agencies on figures of merit issues

 formed Summer 08

 finished ~now (moving on to SCG)

 Use w-eigenmodes to get more complete picture

 also quantify deviations from Einstein gravity

 For today:  Something new we learned about 
(normalizing) modes
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NB: in general the    s form 
a complete basis:
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normalization:
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then

where
D
i ic c a≡ × ∆

Q: Why?

A: For lower modes,        
has typical grid independent
“height” O(1), so one can 
more directly relate values 
of                           to one’s 
thinking (priors) on

D
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Upshot:  More modes are interesting (“well measured” in a 
grid invariant sense) than previously thought. 
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An example of the power of the principle component  
analysis:

Q: I’ve heard the claim that the DETF FoM is unfair to 
BAO, because w0-wa does not describe the high-z 
behavior to which BAO is particularly sensitive. Why 
does this not show up in the 9D analysis?
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Detail: Model discriminating power

2/10/2016 PHY 262 Dark Energy; A. Albrecht 289



DETF Stage 4 ground [Opt] 
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DETF Stage 4 ground [Opt] DETF Stage 4 ground [Opt] 

Axes: 3rd and 4th best measured w(z) modes2/10/2016 PHY 262 Dark Energy; A. Albrecht 291
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