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Some preliminary thoughts

e Please interrupt freely with questions!
| am yours for informal discussion until we leave on
Friday. Please exploit that offer
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Cosmic Inflation:

=» Great phenomenology of
cosmic structure, but

=» Original goal of explaining why
the cosmos is *likely* to take the
form we observe has proven
very difficult to realize. (We
have not succeeded so far.)
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Cosmic Inflation:

=» Great phenomenology of
cosmic structure, but

inal goal of explaining
the cosmos is *likely* to take the

/ very difficult to realize. (We
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Original goal inspired by
Guth’s paper:

L
PHYSICAL REVIEW D VOLUME 23, NUMBER 2 15 JANUARY 198]

Inflationary universe: A possible solution to the horizon and flatness problems

Alan H. Guth*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 11 August 1980)

The standard model of hot big-bang cosmology requires initial conditions which are problematic in two ways: (1)
The early universe is assumed to be highly homogeneous, in spite of the fact that separated regions were causally
disconnected (horizon problem); and (2) the initial value of the Hubble constant must be fine tuned to extraordinary
accuracy to produce a universe as flat (i.e., near critical mass density) as the one we see today (flatness problem).
These problems would disappear if, in its early history, the universe supercooled to temperatures 28 or more orders
of magnitude below the critical temperature for some phase transition. A huge expansion factor would then result
from a period of exponential growth, and the entropy of the universe would be multiplied by a huge factor when the
latent heat is released. Such a scenario is completely natural in the context of grand unified models of elementary-
particle interactions. In such models, the supercooling is also relevant to the problem of monopole suppression.
Unfortunately, the scenario seems to lead to some unacceptable consequences, so modifications must be sought.
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Cosmic Inflation:

=>» Great phenomenology of
cosmic structure, but

=>» Original goal of explaining why
the cosmos is *likely* to take the
form we observe has proven
very difficult to realize. (We
have not succeeded so far.)

=» OR: Just be happy we have
eguations to solve?
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Part 1 outline

1. Big Bang & inflation

2. Eternal inflation
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Part 1 outline

1. Big Bang & inflation ¢==m

2. Eternal inflation
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Friedmann Egn.
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Friedmann EqQn. oca
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Friedmann Egn. oca™ <0
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Evolution of Cosmic Matter
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The curvature feature/“problem”
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The monopole “problem”
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Friedmann Egn. oca™ <0
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Now add cosmic

inflation

Friedmann Eqn.
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Now add cosmic inflation

Friedmann Eqn.
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Now add cosmic inflation

Friedmann Eqn.
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The inflaton:

~Homogeneous scalar field ¢ obeying

U
§+3H) =T (¢)

Cosmic damping Coupling to ordinary matter

Most potentials have a “low roll” (overdamped) regime

where 1
0, :Egb'z +V (¢) =V (¢) ~ const. o a“o// \

A

> ¢
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Add a period of Inflation:
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With inflation, initially large curvature is OK:
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With inflation, early production of large amounts of non-relativistic
matter (monopoles) is ok :
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Inflation detail:

—~ 110¢
O O  Fresssssssnunnnnneery
2
Q === KE
S 105["" "
O -
_pr
100 » » » » »
-28.8 -28.6 -284 -28.2 -28 -27.8 -27.6
0.5
(a \/\
= o .
_e_
_0-5 » » » » »
-28.8 -28.6 -284 -28.2 -28 -27.8 -27.6

Iog(a/ao)

Albrecht Les Houches Lectures 2013 Pt. 1

48



Inflation detail:
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Perturbations from inflation
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Inflation detail:
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Temperature fluctuations [ K? ]
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Part 1 outline

1. Big Bang & inflation ¢==m

2. Eternal inflation

Albrecht Les Houches Lectures 2013 Pt. 1

78



Part 1 outline

1. Big Bang & inflation

2. Eternal inflation ¢=m
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Does inflation make the SBB
(observed universe) natural?

How easy is it to get inflation to
start?

What happened before inflation?
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Quantum fluctuations during slow roll:

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H™
leading to a (random) quantum rate
of change:
Ag _ 2

At =4y =H
Thus

bo _H?

b ¢
measures the importance of
guantum fluctuations in the field
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Quantum fluctuations during slow roll:

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H™
leading to a (random) quantum rate
of change:

Ag _ 2
At =4y =H
Thus

' 2
¢—?:H_ (~5—p~10—5 \
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guantum fluctuations in the field
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Quantum fluctuations during slow roll:

For realistic
perturbations the
evolution is very
classical

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H™
leading to a (random) quantum rate
of change:

Thus

measures the importa
guantum fluctuations in the field
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Quantum fluctuations during slow roll:

For realistic
perturbations the
evolution is very
classical

(But not as classical
as most classical
things we know!)

A region of one field coherence
length ( =R, ) gets a new quantum
contribution to the field value from
an uncorrelated commoving mode
of size A¢g=H inatime At=H™
leading to a (random) quantum rate
of change:

Thus

measures the importa
guantum fluctuations in the field
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If this region
“produced our
observable
universe”...
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It seems reasonable
to assume the field
was rolling up here

beforehand (classical
extrapolation)
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Evolution of Cosmic Len
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Len
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Evolution of Cosmic Len
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Len

oth (zooming out)

X 104

)]

0
H

log[(R,/R

6 5 4 3

D) E) 0

log(a/a,) x 10"

Albrecht Les Houches Lectures 2013 Pt. 1

93



Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)
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Evolution of Cosmic Length (zooming out)

Not at all classical! I
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Substantial probability of
c fluctuating up the potential and

6_\\§ - — continuing the inflationary
\

expansion = “Eternal Inflation’

)
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Steinhardt 1982, Linde 1982, Vilenkin
1983, and (then) ma ny others Albrecht Les Houches Lectures 2013 Pt. 1
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Substantial probability of

/ fluctuating up the potential and

)]

0
H

log[(R,/R

continuing the inflationary
expansion = “Eternal Inflation”

Observable
Universe
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At end of self-reproduction our observable length scales were

exponentially below the Plank length (and much smaller than that

*during™* self-reproduction)!
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At “formation” (Hubble length crossing) observable scales were just
above the Planck length
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Substantial probability of
fluctuating up the potential and

N\ — continuing the inflationary
6\\

expansion = “Eternal Inflation”
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At “formation” (Hubble length crossing) observable scales were just
above the Planck length
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At end of self-reproduction our observable length scales were
exponentially “below the Plank length” (and much smaller than that

*during™* self-reproduction)!
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Cosmic structure

To dgy
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Cosmic length scale
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Cosmic structure orlgmates
“superhorizon” from the initial
singularity in Standard Big Bang.
What concrete thing could we say
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Cosmic structure

To dgy
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Cosmic structure | /
originates in quantum
ground state in
inflationary cosmology
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In self-reproduction
regime, guantum
fluctuations compete
with classical rolling
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Self-reproduction is a generic feature of almost
any inflaton potential:

During inflation

$+3Hg=-T ,p-V'(9)

. x ¢Q = al ~ H® o
3H¢~-V'(4) 6 ¢ V'(9)
\‘, >1 for self-
b~ V'(9) reproduction
3H
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In self-reproduction
regime, guantum

fluctuations compete
with classical rolling

Linde & Linde
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Eternal inflation features

* Most of the Universe is always inflating
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Eternal inflation features

* Most of the Universe is always inflating
* Leads to infinite Universe, infinitely many pocket universes. The
self-reproduction phase lasts forever.
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Eternal inflation features

* Most of the Universe is always inflating
* Leads to infinite Universe, infinitely many pocket universes. The
self-reproduction phase lasts forever (globally).
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Eternal inflation features

* Most of the Universe is always inflating

* Leads to infinite Universe, infinitely many pocket universes. The
self-reproduction phase lasts forever.

* Inflation “takes over the Universe”, seems like a good theory of

initial conditions.
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* For a specific time cutoff, the most recently produced pocket
universes are exponentially favored (produced in an
exponentially larger region).
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» End of time problem
» Measure problems
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According to
some: “True
infinity”
needed here
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initial conditions.
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Les Houches Lectures on Cosmic Inflation

Four Parts

1) Introductory material | EFnd Part 1

2) Entropy, Tuning and Equilibrium in Cosmology

3) Classical and quantum probabilities in the
multiverse

4) de Sitter equilibrium cosmology

Andreas Albrecht; UC Davis
Les Houches Lectures; July Aug 2013
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